Accounting for Localized Defects in the Optoelectronic Design of Thin-Film Solar Cells

被引:15
|
作者
Deceglie, Michael G. [1 ]
Ferry, Vivian E. [2 ,3 ]
Alivisatos, A. Paul [2 ,3 ]
Atwater, Harry A. [1 ]
机构
[1] CALTECH, Thomas J Watson Lab Appl Phys, Pasadena, CA 91125 USA
[2] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
来源
IEEE JOURNAL OF PHOTOVOLTAICS | 2013年 / 3卷 / 02期
基金
美国能源部;
关键词
Light trapping; plasmon; simulation; thin-film solar cell; OPEN-CIRCUIT VOLTAGE; SURFACE-MORPHOLOGY; PHOTONIC CRYSTAL; ABSORPTION; EFFICIENCY;
D O I
10.1109/JPHOTOV.2013.2240764
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Controlled nanostructuring of thin-film solar cells offers a promising route toward increased efficiency through improved light trapping. Many such light trapping designs involve structuring of the active region itself. Optimization of these designs is aided by the use of computer simulations that account for both the optics and electronics of the device. We describe such a simulation-based approach that accounts for experimental trade-offs between high-aspect ratio structuring and electronic material quality. Our model explicitly accounts for localized regions of degraded material quality that is induced by light trapping structures in n-i-p a-Si:H solar cells. We find that the geometry of the defects couples to the geometry of light absorption profiles in the active region and that this coupling impacts the spectral response of the device. Our approach yields insights into the nanoscale device physics that is associated with localized geometry-induced defects and provides a framework for full optoelectronic optimization.
引用
收藏
页码:599 / 604
页数:6
相关论文
共 50 条
  • [1] Accounting for Localized Defects in the Optoelectronic Design of Thin-Film Solar Cells
    Deceglie, Michael G.
    Ferry, Vivian E.
    Alivisatos, A. Paul
    Atwater, Harry A.
    2012 IEEE 38TH PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), VOL 2, 2013,
  • [2] THERMOREFLECTANCE IMAGING OF DEFECTS IN THIN-FILM SOLAR CELLS
    Kendig, D.
    Alers, G. B.
    Shakouri, A.
    2010 INTERNATIONAL RELIABILITY PHYSICS SYMPOSIUM, 2010, : 499 - 502
  • [3] Coupled optoelectronic simulation and optimization of thin-film photovoltaic solar cells
    Anderson, Tom H.
    Civiletti, Benjamin J.
    Monk, Peter B.
    Lakhtakia, Akhlesh
    JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 407
  • [4] Molecular design of thin film optoelectronic materials for solar cells
    Moore, Jeffrey S.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (37) : 12201 - 12203
  • [5] Molecular design of thin film optoelectronic materials for solar cells
    Moore, Jeffrey S.
    Journal of the American Chemical Society, 2008, 130 (37): : 12201 - 12203
  • [6] Identification of Killer Defects in Kesterite Thin-Film Solar Cells
    Kim, Sunghyun
    Park, Ji-Sang
    Walsh, Aron
    ACS ENERGY LETTERS, 2018, 3 (02): : 496 - 500
  • [7] Defects signature in VOC characterization of thin-film solar cells
    Kumar, Atul
    Ranjan, Pranay
    SOLAR ENERGY, 2021, 220 : 35 - 42
  • [8] Thin-film solar cells
    Aberle, Armin G.
    THIN SOLID FILMS, 2009, 517 (17) : 4706 - 4710
  • [9] Optoelectronic optimization of graded-bandgap thin-film AlGaAs solar cells
    Ahmad, Faiz
    Lakhtakia, Akhlesh
    Monk, Peter B.
    APPLIED OPTICS, 2020, 59 (04) : 1018 - 1027
  • [10] Impact of Surface Roughness in Measuring Optoelectronic Characteristics of Thin-Film Solar Cells
    Magginetti, David
    Jeon, Seokmin
    Yoon, Yohan
    Choudhury, Ashif
    Mamun, Ashraful
    Qian, Yang
    Gerton, Jordan
    Yoon, Heayoung
    2023 IEEE 50TH PHOTOVOLTAIC SPECIALISTS CONFERENCE, PVSC, 2023,