Osteocytes respond to particles of clinically-relevant conventional and cross-linked polyethylene and metal alloys by up-regulation of resorptive and inflammatory pathways

被引:43
作者
Ormsby, Renee T. [1 ]
Solomon, Lucian B. [1 ,2 ]
Yang, Dongqing [1 ]
Crotti, Tania N. [3 ]
Haynes, David R. [3 ]
Findlay, David M. [1 ]
Atkins, Gerald J. [1 ]
机构
[1] Univ Adelaide, Biomed Orthopaed Res Grp, Ctr Orthopaed & Trauma Res, Adelaide, SA 5000, Australia
[2] Royal Adelaide Hosp, Orthopaed & Trauma Serv, Adelaide, SA 5000, Australia
[3] Univ Adelaide, Discipline Anat & Pathol, Adelaide, SA 5005, Australia
基金
英国医学研究理事会;
关键词
Osteocyte; Wear particle; Polyethylene; Titanium alloy; Cobalt chrome; HUMAN PRIMARY OSTEOBLASTS; TOTAL HIP-ARTHROPLASTY; MOLECULAR-WEIGHT; WEAR DEBRIS; PERIPROSTHETIC OSTEOLYSIS; NITRIC-OXIDE; BONE; CELLS; EXPRESSION; APOPTOSIS;
D O I
10.1016/j.actbio.2019.01.047
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Periprosthetic osteolysis is a major cause of implant failure in total hip replacements. Aseptic loosening caused by osteolytic lesions is associated with the production of bioactive wear particles from the articulations of implants. Wear particles infiltrate the surrounding tissue of implants, promoting inflammation as well as bone resorption. Osteocytes have been shown to both regulate physiological osteoclastogenesis and directly remodel their perilacunar bone matrix by the process of osteocytic osteolysis. We hypothesise that osteocytes respond to wear debris of orthopaedic implant materials by adopting a pro-catabolic phenotype and thus contribute to periprosthetic osteolysis through the known pathways of bone loss. Osteocyte responses to particles derived from clinically relevant materials, ultra-high molecular weight polyethylene (UHMWPE), highly cross-linked polyethylene (XLPE) and metal alloys, Ti6Al4V and CoCrMo, were examined in vitro in human primary osteocyte-like cultures. Osteocyte-like cells exposed to both polyethylene and metal wear particle types showed upregulated expression of catabolic markers associated with osteocytic osteolysis, MMP13, carbonic anhydrase 2 (CA2) and cathepsin K (CTSK). In addition, pro-osteoclastogenesis markers RANKL and M-CSF were induced, as well as the expression of pro-inflammatory cytokines, IL-6 and TNF alpha, albeit with different kinetics. These findings suggest a previously unrecognised action of wear particles of multiple orthopaedic materials on osteocytes, and suggest a multifaceted role for osteocytes in periprosthetic osteolysis. Statement of Significance This study addresses periprosthetic osteolysis, a major clinical problem leading to aseptic loosening of orthopaedic implants. It is well accepted that wear particles of polyethylene and of other implant materials stimulate the activity of bone resorbing osteoclasts. Our recent work provided evidence that commercial particles of ultra-high molecular weight polyethylene (UHMWPE) stimulated osteocytes to adopt a bone catabolic state. In this study we demonstrate for the first time that particles derived from materials in clinical use, conventional UHMWPE, highly cross-linked polyethylene (XLPE), and Ti6Al4V and CoCrMo metal alloys, all stimulate human osteocyte activities of osteocyte-regulated osteoclastogenesis, osteocytic osteolysis, proinflammatory responses, osteocyte apoptosis, albeit to varying extents. This study provides further mechanistic insight into orthopaedic wear particle mediated bone disease in terms of the osteocyte, the most abundant and key controlling cell type in bone. (C) 2019 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:296 / 306
页数:11
相关论文
共 70 条
[1]   Aseptic loosening of total joint replacements: mechanisms underlying osteolysis and potential therapies [J].
Abu-Amer, Yousef ;
Darwech, Isra ;
Clohisy, John C. .
ARTHRITIS RESEARCH & THERAPY, 2007, 9 (Suppl 1)
[2]  
[Anonymous], 2017, AUSTR ORTHOPAEDIC AS
[3]   The pathobiology and pathology of aseptic implant failure [J].
Athanasou, N. A. .
BONE & JOINT RESEARCH, 2016, 5 (05) :162-168
[4]   Strontium ranelate treatment of human primary osteoblasts promotes an osteocyte-like phenotype while eliciting an osteoprotegerin response [J].
Atkins, G. J. ;
Welldon, K. J. ;
Halbout, P. ;
Findlay, D. M. .
OSTEOPOROSIS INTERNATIONAL, 2009, 20 (04) :653-664
[5]   Role of polyethylene particles in peri-prosthetic osteolysis: A review [J].
Atkins, Gerald J. ;
Haynes, David R. ;
Howie, Donald W. ;
Findlay, David M. .
WORLD JOURNAL OF ORTHOPEDICS, 2011, 2 (10) :93-101
[6]   Sclerostin Is a Locally Acting Regulator of Late-Osteoblast/Preosteocyte Differentiation and Regulates Mineralization Through a MEPE-ASARM-Dependent Mechanism [J].
Atkins, Gerald J. ;
Rowe, Peter S. ;
Lim, Hui P. ;
Welldon, Katie J. ;
Ormsby, Renee ;
Wijenayaka, Asiri R. ;
Zelenchuk, Lesya ;
Evdokiou, Andreas ;
Findlay, David M. .
JOURNAL OF BONE AND MINERAL RESEARCH, 2011, 26 (07) :1425-1436
[7]   The induction of a catabolic phenotype in human primary osteoblasts and osteocytes by polyethylene particles [J].
Atkins, Gerald J. ;
Welldon, Katie J. ;
Holding, Christopher A. ;
Haynes, David R. ;
Howie, Donald W. ;
Findlay, David M. .
BIOMATERIALS, 2009, 30 (22) :3672-3681
[8]   VITAMIN-D-ENHANCED OSTEOCYTIC AND OSTEOCLASTIC BONE RESORPTION [J].
BAYLINK, D ;
SIPE, J ;
WERGEDAL, J ;
WHITTEMORE, OJ .
AMERICAN JOURNAL OF PHYSIOLOGY, 1973, 224 (06) :1345-1357
[9]   The Amazing Osteocyte [J].
Bonewald, Lynda F. .
JOURNAL OF BONE AND MINERAL RESEARCH, 2011, 26 (02) :229-238
[10]   PGE2 and IL-6 production by fibroblasts in response to titanium wear debris particles is mediated through a Cox-2 dependent pathway [J].
Bukata, SV ;
Gelinas, J ;
Wei, XC ;
Rosier, RN ;
Puzas, JE ;
Zhang, XP ;
Schwarz, EM ;
Song, XYR ;
Griswold, DE ;
O'Keefe, RJ .
JOURNAL OF ORTHOPAEDIC RESEARCH, 2004, 22 (01) :6-12