One-loop structure of the U(1) gauge model on the truncated Heisenberg space

被引:4
作者
Buric, Maja [1 ]
Nenadovic, Luka [1 ]
Prekrat, Dragan [1 ]
机构
[1] Univ Belgrade, Fac Phys, POB 44, Belgrade 11001, Serbia
来源
EUROPEAN PHYSICAL JOURNAL C | 2016年 / 76卷 / 12期
关键词
BETA-FUNCTION; FIELD-THEORY; RENORMALIZATION; DUALITY;
D O I
10.1140/epjc/s10052-016-4522-x
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We calculate divergent one-loop corrections to the propagators of the U(1) gauge theory on the truncated Heisenberg space, which is one of the extensions of the Grosse-Wulkenhaar model. The model is purely geometric, based on the Yang-Mills action; the corresponding gauge-fixed theory is BRST invariant. We quantize perturbatively and, along with the usual wave-function and mass renormalizations, we find divergent nonlocal terms of the square(-1) and square(-2) type. We discuss the meaning of these terms and possible improvements of the model.
引用
收藏
页数:17
相关论文
共 36 条
[1]  
[Anonymous], 2000, LOND MATH SOC LECT N
[2]  
Attems M., 2005, JHEP, V0507
[3]   Non-commutative U(1) gauge theory on R4⊙ with oscillator term and BRST symmetry [J].
Blaschke, D. N. ;
Grosse, H. ;
Schweda, M. .
EPL, 2007, 79 (06)
[4]   A new approach to non-commutative U☆(N) gauge fields [J].
Blaschke, D. N. .
EPL, 2010, 91 (01)
[5]  
Blaschke DN, 2008, J PHYS A-MATH THEOR, V41, DOI 10.1088/1751-8113/41/25/252002
[6]   On non-commutative U☆(1) gauge models and renormalizability [J].
Blaschke, Daniel N. ;
Rofner, Arnold ;
Sedmik, Rene I. P. ;
Wohlgenannt, Michael .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (42)
[7]   Gauge Theories on Deformed Spaces [J].
Blaschke, Daniel N. ;
Kronberger, Erwin ;
Sedmik, Rene I. P. ;
Wohlgenannt, Michael .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2010, 6
[8]   One-loop calculations for a translation invariant non-commutative gauge model [J].
Blaschke, Daniel N. ;
Rofner, Arnold ;
Schweda, Manfred ;
Sedmik, Rene I. P. .
EUROPEAN PHYSICAL JOURNAL C, 2009, 62 (02) :433-443
[9]   Quantization of gauge theory on a curved noncommutative space [J].
Buric, M. ;
Dimitrijevic, M. ;
Radovanovic, V. ;
Wohlgenannt, M. .
PHYSICAL REVIEW D, 2012, 86 (10)
[10]  
Buric M., 2011, POS QGQGS 2011