Parallel topology optimization of bi-material layout for vibration control in plate structures

被引:0
作者
Xue, X. G. [1 ]
Li, G. X. [1 ]
Gong, J. Z. [1 ]
Wu, B. Z. [1 ]
机构
[1] Natl Univ Def Technol, Sch Mechatron Engn & Automat, Changsha 410073, Hunan, Peoples R China
来源
MATERIALS PROCESSING TECHNOLOGY II, PTS 1-4 | 2012年 / 538-541卷
关键词
Parallel implementation; Topology optimization; Parallel finite element; Vibration control; CODE WRITTEN; MATLAB;
D O I
10.4028/www.scientific.net/AMR.538-541.2586
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper presents a parallel implementation process for the structural dynamic topology optimization problem. An energy flow analysis based topology optimization model is established for the objective of vibration control. The structural vibrations are excited by time-harmonic external mechanical loading with prescribed frequency and amplitude. Design variables are parameterized using Bi-material Solid Isotropic Material with Penalization (SIMP) models and Method of Moving Asymptotes (MMA) is applied for variable updating. A Parallel Finite Element (PFE) model is constructed by re-group the original finite element model. Each PFE will be computed by different processor, and then assembles together to get the global response. The efficiency and stability can be improved, which has been illustrated in the results discussion section in the end of the paper.
引用
收藏
页码:2586 / 2593
页数:8
相关论文
共 27 条
[1]   Matlab implementation of the finite element method in elasticity [J].
Alberty, J ;
Carstensen, C ;
Funken, SA ;
Klose, R .
COMPUTING, 2002, 69 (03) :239-263
[2]   Remarks around 50 lines of Matlab: short finite element implementation [J].
Alberty, J ;
Carstensen, C ;
Funken, SA .
NUMERICAL ALGORITHMS, 1999, 20 (2-3) :117-137
[3]   Structural optimization using sensitivity analysis and a level-set method [J].
Allaire, G ;
Jouve, F ;
Toader, AM .
JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 194 (01) :363-393
[4]  
Andreassen Erik, 2011, STRUCTURAL MULTIDISC, V41, P453
[5]  
[Anonymous], 2013, Topology optimization: theory, methods, and applications
[6]  
Bendsoe M. P., 1989, Struct. Optim., V1, P193, DOI [10.1007/BF01650949, DOI 10.1007/BF01650949]
[7]   GENERATING OPTIMAL TOPOLOGIES IN STRUCTURAL DESIGN USING A HOMOGENIZATION METHOD [J].
BENDSOE, MP ;
KIKUCHI, N .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1988, 71 (02) :197-224
[8]  
Censor Yair, 1997, ZENIOSPARALLEL OPTIM
[9]   A discrete level-set topology optimization code written in Matlab [J].
Challis, Vivien J. .
STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2010, 41 (03) :453-464
[10]   Topological shape optimization of power flow problems at high frequencies using level set approach [J].
Cho, S ;
Ha, SH ;
Park, CY .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2006, 43 (01) :172-192