On the integrability aspects of nonparaxial nonlinear Schrodinger equation and the dynamics of solitary waves

被引:8
|
作者
Tamilselvan, K. [1 ]
Kanna, T. [1 ]
Govindarajan, A. [2 ]
机构
[1] Bharathidasan Univ, PG & Res Dept Phys, Nonlinear Waves Res Lab, Bishop Heber Coll, Tiruchirappalli 620017, Tamil Nadu, India
[2] Bharathidasan Univ, Ctr Nonlinear Dynam, Sch Phys, Tiruchirappalli 620024, Tamil Nadu, India
关键词
Bright solitary waves; Integrability; Painleve analysis; Hirota's bilinearization method; Nonparaxial NLS; Solitary wave interaction; PAINLEVE PROPERTY; BRIGHT SOLITONS; COLLISIONS; SYMMETRY; SHAPE;
D O I
10.1016/j.physleta.2020.126729
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The integrability nature of a nonparaxial nonlinear Schrodinger (NNLS) equation, describing the propagation of ultra-broad nonparaxial beams in a planar optical waveguide, is studied by employing the Painleve singularity structure analysis. Our study shows that the NNLS equation fails to satisfy the Painleve test. Nevertheless, we construct one bright solitary wave solution for the NNLS equation by using the Hirota's direct method. Also, we numerically demonstrate the stable propagation of the obtained bright solitary waves even in the presence of an external perturbation in a form of white noise. We then numerically investigate the coherent interaction dynamics of two and three bright solitary waves. Our study reveals interesting energy switching among the colliding solitary waves due to the nonparaxiality. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条