On the integrability aspects of nonparaxial nonlinear Schrodinger equation and the dynamics of solitary waves

被引:8
|
作者
Tamilselvan, K. [1 ]
Kanna, T. [1 ]
Govindarajan, A. [2 ]
机构
[1] Bharathidasan Univ, PG & Res Dept Phys, Nonlinear Waves Res Lab, Bishop Heber Coll, Tiruchirappalli 620017, Tamil Nadu, India
[2] Bharathidasan Univ, Ctr Nonlinear Dynam, Sch Phys, Tiruchirappalli 620024, Tamil Nadu, India
关键词
Bright solitary waves; Integrability; Painleve analysis; Hirota's bilinearization method; Nonparaxial NLS; Solitary wave interaction; PAINLEVE PROPERTY; BRIGHT SOLITONS; COLLISIONS; SYMMETRY; SHAPE;
D O I
10.1016/j.physleta.2020.126729
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The integrability nature of a nonparaxial nonlinear Schrodinger (NNLS) equation, describing the propagation of ultra-broad nonparaxial beams in a planar optical waveguide, is studied by employing the Painleve singularity structure analysis. Our study shows that the NNLS equation fails to satisfy the Painleve test. Nevertheless, we construct one bright solitary wave solution for the NNLS equation by using the Hirota's direct method. Also, we numerically demonstrate the stable propagation of the obtained bright solitary waves even in the presence of an external perturbation in a form of white noise. We then numerically investigate the coherent interaction dynamics of two and three bright solitary waves. Our study reveals interesting energy switching among the colliding solitary waves due to the nonparaxiality. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Solitary waves in the resonant nonlinear Schrodinger equation: Stability and dynamical properties
    Williams, F.
    Tsitoura, F.
    Horikis, T. P.
    Kevrekidis, P. G.
    PHYSICS LETTERS A, 2020, 384 (22)
  • [22] Solitary waves in the nonlinear Schrodinger equation with spatially modulated Bessel nonlinearity
    Zhong, Wei-Ping
    Belic, Milivoj R.
    Huang, Tingwen
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2013, 30 (05) : 1276 - 1283
  • [23] On asymptotic stability of solitary waves in Schrodinger equation coupled to nonlinear oscillator
    Buslaev, V. S.
    Komech, A. I.
    Kopylova, E. A.
    Stuart, D.
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2008, 33 (04) : 669 - 705
  • [24] DARK SOLITARY WAVES IN A GENERALIZED VERSION OF THE NONLINEAR SCHRODINGER-EQUATION
    BASS, FG
    KONOTOP, VV
    PUZENKO, SA
    PHYSICAL REVIEW A, 1992, 46 (07): : 4185 - 4191
  • [25] Nonparaxial traveling solitary waves in layered nonlinear media
    Kominis, Yannis
    PHYSICAL REVIEW A, 2013, 87 (04):
  • [26] Periodic and solitary waves of the cubic-quintic nonlinear Schrodinger equation
    Hong, L
    Beech, R
    Osman, F
    He, XT
    Lou, SY
    Hora, H
    JOURNAL OF PLASMA PHYSICS, 2004, 70 : 415 - 429
  • [27] SOLITARY WAVES OF THE CAMASSA-HOLM DERIVATIVE NONLINEAR SCHRODINGER EQUATION
    Guo, L. J.
    Ward, C. B.
    Mylonas, I. K.
    Kevrekidis, P. G.
    ROMANIAN REPORTS IN PHYSICS, 2020, 72 (02)
  • [28] Optical solitary waves in the generalized higher order nonlinear Schrodinger equation
    Ruan, HY
    Li, H
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2005, 74 (02) : 543 - 546
  • [29] ORBITAL STABILITY OF SOLITARY WAVES FOR THE NONLINEAR DERIVATIVE SCHRODINGER-EQUATION
    GUO, BL
    WU, YP
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 123 (01) : 35 - 55
  • [30] New optical solitary waves for unstable Schrodinger equation in nonlinear medium
    Zhou, Qin
    Rezazadeh, Hadi
    Korkmaz, Alper
    Eslami, Mostafa
    Mirzazadeh, Mohammad
    Rezazadeh, Mohammadreza
    OPTICA APPLICATA, 2019, 49 (01) : 135 - 150