On the integrability aspects of nonparaxial nonlinear Schrodinger equation and the dynamics of solitary waves

被引:8
|
作者
Tamilselvan, K. [1 ]
Kanna, T. [1 ]
Govindarajan, A. [2 ]
机构
[1] Bharathidasan Univ, PG & Res Dept Phys, Nonlinear Waves Res Lab, Bishop Heber Coll, Tiruchirappalli 620017, Tamil Nadu, India
[2] Bharathidasan Univ, Ctr Nonlinear Dynam, Sch Phys, Tiruchirappalli 620024, Tamil Nadu, India
关键词
Bright solitary waves; Integrability; Painleve analysis; Hirota's bilinearization method; Nonparaxial NLS; Solitary wave interaction; PAINLEVE PROPERTY; BRIGHT SOLITONS; COLLISIONS; SYMMETRY; SHAPE;
D O I
10.1016/j.physleta.2020.126729
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The integrability nature of a nonparaxial nonlinear Schrodinger (NNLS) equation, describing the propagation of ultra-broad nonparaxial beams in a planar optical waveguide, is studied by employing the Painleve singularity structure analysis. Our study shows that the NNLS equation fails to satisfy the Painleve test. Nevertheless, we construct one bright solitary wave solution for the NNLS equation by using the Hirota's direct method. Also, we numerically demonstrate the stable propagation of the obtained bright solitary waves even in the presence of an external perturbation in a form of white noise. We then numerically investigate the coherent interaction dynamics of two and three bright solitary waves. Our study reveals interesting energy switching among the colliding solitary waves due to the nonparaxiality. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Solitary waves for the nonparaxial nonlinear Schrodinger equation
    Li, Dingsi
    Manafian, Jalil
    Ilhan, Onur Alp
    Alkhayyat, Safa
    Mahmoud, K. H.
    Alsalamy, Ali
    Zeynalli, Subhiya M.
    MODERN PHYSICS LETTERS B, 2024, 38 (01):
  • [2] Solitary waves for the nonparaxial nonlinear Schrodinger equation (vol 38, 2350204, 2024)
    Li, Dingsi
    Manafian, Jalil
    Alp Ilhan, Onur
    Alkhayyat, Safa
    Mahmoud, K. H.
    Alsalamy, Ali
    Zeynalli, Subhiya M.
    MODERN PHYSICS LETTERS B, 2024, 38 (18):
  • [3] Solitary waves solutions of a nonlinear Schrodinger equation
    Micheletti, AM
    Visetti, D
    NONLINEAR EQUATIONS: METHODS, MODELS AND APPLICATIONS, 2003, 54 : 217 - 224
  • [4] Solitary waves for nonlinear Schrodinger equation with derivative
    Miao, Changxing
    Tang, Xingdong
    Xu, Guixiang
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2018, 20 (04)
  • [6] Evolution of solitary waves for a perturbed nonlinear Schrodinger equation
    Hoseini, S. M.
    Marchant, T. R.
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (12) : 3642 - 3651
  • [7] Stability of Solitary Waves for the Nonlinear Derivative Schrodinger Equation
    郭柏灵
    吴雅萍
    数学进展, 1993, (05) : 473 - 475
  • [8] Stability of solitary waves for derivative nonlinear Schrodinger equation
    Colin, Mathieu
    Ohta, Masahito
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2006, 23 (05): : 753 - 764
  • [9] Nonparaxial solitons and the dynamics of solitary waves for the coupled nonlinear Helmholtz systems
    Yufeng Qian
    Jalil Manafian
    Mohammed Asiri
    Khaled Hussein Mahmoud
    Ali Ihsan Alanssari
    Abdullah Saad Alsubaie
    Optical and Quantum Electronics, 2023, 55
  • [10] Nonparaxial solitons and the dynamics of solitary waves for the coupled nonlinear Helmholtz systems
    Qian, Yufeng
    Manafian, Jalil
    Asiri, Mohammed
    Mahmoud, Khaled Hussein
    Alanssari, Ali Ihsan
    Alsubaie, Abdullah Saad
    OPTICAL AND QUANTUM ELECTRONICS, 2023, 55 (11)