Predicting the spatio-temporal distribution of Culicoides imicola in Sardinia using a discrete-time population model

被引:17
|
作者
Rigot, Thibaud [1 ,2 ]
Conte, Annamaria [3 ]
Goffredo, Maria [3 ]
Ducheyne, Els [4 ]
Hendrickx, Guy [4 ]
Gilbert, Marius [1 ,5 ]
机构
[1] Univ Libre Bruxelles, Biol Control & Spatial Ecol LUBIES, B-1050 Brussels, Belgium
[2] INRA, UMR 1202, F-33610 Cestas, France
[3] Ist Zooprofilatt Sperimentale Abruzzo & Molise G, I-64100 Teramo, Italy
[4] Avia GIS, B-2980 Zoersel, Belgium
[5] Fonds Natl Rech Sci, B-1000 Brussels, Belgium
来源
PARASITES & VECTORS | 2012年 / 5卷
关键词
Spatial ecology; Infectious disease; Remote-sensing; Dynamic model; Longitudinal entomological surveillance network; Mediterranean basin; AFRICAN HORSE SICKNESS; BITING MIDGES DIPTERA; BLUETONGUE VIRUS; SEASONAL DISTRIBUTION; OBSOLETUS COMPLEX; SPECIES DIPTERA; ENTOMOLOGICAL SURVEILLANCE; SATELLITE IMAGERY; CLIMATIC REGIONS; CERATOPOGONIDAE;
D O I
10.1186/1756-3305-5-270
中图分类号
R38 [医学寄生虫学]; Q [生物科学];
学科分类号
07 ; 0710 ; 09 ; 100103 ;
摘要
Background: Culicoides imicola KIEFFER, 1913 (Diptera: Ceratopogonidae) is the principal vector of Bluetongue disease in the Mediterranean basin, Africa and Asia. Previous studies have identified a range of eco-climatic variables associated with the distribution of C. imicola, and these relationships have been used to predict the large-scale distribution of the vector. However, these studies are not temporally-explicit and can not be used to predict the seasonality in C. imicola abundances. Between 2001 and 2006, longitudinal entomological surveillance was carried out throughout Italy, and provided a comprehensive spatio-temporal dataset of C. imicola catches in Onderstepoort-type black-light traps, in particular in Sardinia where the species is considered endemic. Methods: We built a dynamic model that allows describing the effect of eco-climatic indicators on the monthly abundances of C. imicola in Sardinia. Model precision and accuracy were evaluated according to the influence of process and observation errors. Results: A first-order autoregressive cofactor, a digital elevation model and MODIS Land Surface Temperature (LST)/or temperatures acquired from weather stations explained similar to 77% of the variability encountered in the samplings carried out in 9 sites during 6 years. Incorporating Normalized Difference Vegetation Index (NDVI) or rainfall did not increase the model's predictive capacity. On average, dynamics simulations showed good accuracy (predicted vs. observed r corr = 0.9). Although the model did not always reproduce the absolute levels of monthly abundances peaks, it succeeded in reproducing the seasonality in population level and allowed identifying the periods of low abundances and with no apparent activity. On that basis, we mapped C. imicola monthly distribution over the entire Sardinian region. Conclusions: This study demonstrated prospects for modelling data arising from Culicoides longitudinal entomological surveillance. The framework explicitly incorporates the influence of eco-climatic factors on population growth rates and accounts for observation and process errors. Upon validation, such a model could be used to predict monthly population abundances on the basis of environmental conditions, and hence can potentially reduce the amount of entomological surveillance.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 31 条
  • [1] Predicting the spatio-temporal distribution of Culicoides imicola in Sardinia using a discrete-time population model
    Thibaud Rigot
    Annamaria Conte
    Maria Goffredo
    Els Ducheyne
    Guy Hendrickx
    Marius Gilbert
    Parasites & Vectors, 5
  • [2] Predicting spatio-temporal Culicoides imicola distributions in Spain based on environmental habitat characteristics and species dispersal
    Peters, J.
    Waegeman, W.
    Van Doninck, J.
    Ducheyne, E.
    Calvete, C.
    Lucientes, J.
    Verhoest, N. E. C.
    De Baets, B.
    ECOLOGICAL INFORMATICS, 2014, 22 : 69 - 80
  • [3] Spatio-temporal genetic variation of the biting midge vector species Culicoides imicola (Ceratopogonidae) Kieffer in France
    Stéphanie Jacquet
    Karine Huber
    Hélène Guis
    Marie-Laure Setier-Rio
    Maria Goffredo
    Xavier Allène
    Ignace Rakotoarivony
    Christine Chevillon
    Jérémy Bouyer
    Thierry Baldet
    Thomas Balenghien
    Claire Garros
    Parasites & Vectors, 9
  • [4] Spatio-temporal genetic variation of the biting midge vector species Culicoides imicola (Ceratopogonidae) Kieffer in France
    Jacquet, Stephanie
    Huber, Karine
    Guis, Helene
    Setier-Rio, Marie-Laure
    Goffredo, Maria
    Allene, Xavier
    Rakotoarivony, Ignace
    Chevillon, Christine
    Bouyer, Jeremy
    Baldet, Thierry
    Balenghien, Thomas
    Garros, Claire
    PARASITES & VECTORS, 2016, 9
  • [5] The spatio-temporal distribution patterns of biting midges of the genus Culicoides in Salta province, Argentina
    Veggiani Aybar, Cecilia A.
    Dantur Juri, Maria J.
    Santana, Mirta
    Lizarralde de Grosso, Mercedes S.
    Spinelli, Gustavo R.
    JOURNAL OF INSECT SCIENCE, 2012, 12 : 1 - 10
  • [6] Optimization of ecosystem model parameters using spatio-temporal soil moisture information
    Zhu, Lin
    Chen, Jing M.
    Qin, Qiming
    Li, Jianping
    Wang, Lianxi
    ECOLOGICAL MODELLING, 2009, 220 (18) : 2121 - 2136
  • [7] Bayesian spatio-temporal random coefficient time series (BaST-RCTS) model of infectious disease
    Zhang, Tao
    Zhang, Xingyu
    Ma, Yue
    Zhou, Xiaohua Andrew
    Liu, Yuanyuan
    Feng, Zijian
    Li, Xiaosong
    MATHEMATICAL BIOSCIENCES, 2014, 258 : 93 - 100
  • [8] Mapping spatio-temporal changes of Chinese electric power consumption using night-time imagery
    Zhao, Naizhuo
    Ghosh, Tilottama
    Samson, Eric L.
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2012, 33 (20) : 6304 - 6320
  • [9] Predicting the spatio-temporal variation of run-off generation in India using remotely sensed input and Soil Conservation Service curve number model
    Gupta, P. K.
    Panigrahy, S.
    CURRENT SCIENCE, 2008, 95 (11): : 1580 - 1587
  • [10] DeepPaSTL: Spatio-Temporal Deep Learning Methods for Predicting Long-Term Pasture Terrains Using Synthetic Datasets
    Rangwala, Murtaza
    Liu, Jun
    Ahluwalia, Kulbir Singh
    Ghajar, Shayan
    Dhami, Harnaik Singh
    Tracy, Benjamin F.
    Tokekar, Pratap
    Williams, Ryan K.
    AGRONOMY-BASEL, 2021, 11 (11):