Indirect Modulation of a Terahertz Quantum Cascade Laser Using Gate Tunable Graphene

被引:7
作者
Badhwar, Shruti [1 ]
Puddy, Reuben [1 ]
Kidambi, Piran R. [2 ]
Sibik, Juraj [3 ]
Brewer, Anthony [1 ]
Freeman, Joshua R. [4 ]
Beere, Harvey E. [1 ]
Hofmann, Stephan [2 ]
Zeitler, J. Axel [3 ]
Ritchie, David A. [1 ]
机构
[1] Univ Cambridge, Dept Phys, Cambridge CB2 1TN, England
[2] Univ Cambridge, Ctr Adv Photon & Elect, Cambridge CB2 1TN, England
[3] Univ Cambridge, Dept Chem Engn, Cambridge CB2 1TN, England
[4] Lab Pierre Agrain, Paris, France
来源
IEEE PHOTONICS JOURNAL | 2012年 / 4卷 / 05期
基金
英国工程与自然科学研究理事会;
关键词
Graphene; terahertz (THz); quantum cascade laser (QCL); modulator; TRANSISTORS;
D O I
10.1109/JPHOT.2012.2215312
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We bring together two areas of terahertz (THz) technology that have benefited from recent advancements in research, i.e., graphene, a material that has plasmonic resonances in the THz frequency, and quantum cascade lasers (QCLs), a compact electrically driven unipolar source of THz radiation. We demonstrate the use of single-layer large-area graphene to indirectly modulate a THz QCL operating at 2.0 THz. By tuning the Fermi level of the graphene via a capacitively coupled backgate voltage, the optical conductivity and, hence, the THz transmission can be varied. We show that, by changing the pulsing frequency of the backgate, the THz transmission can be altered. We also show that, by varying the pulsing frequency of the backgate from tens of Hz to a few kHz, the amplitude-modulated THz signal can be switched by 15% from a "low" state to a "high" state.
引用
收藏
页码:1776 / 1782
页数:7
相关论文
共 20 条
[1]   13 GHz direct modulation of terahertz quantum cascade lasers [J].
Barbieri, Stefano ;
Maineult, Wilfried ;
Dhillon, Sukhdeep S. ;
Sirtori, Carlo ;
Alton, Jesse ;
Breuil, Nicolas ;
Beere, Harvey E. ;
Ritchie, David A. .
APPLIED PHYSICS LETTERS, 2007, 91 (14)
[2]   Broadband electromagnetic response and ultrafast dynamics of few-layer epitaxial graphene [J].
Choi, H. ;
Borondics, F. ;
Siegel, D. A. ;
Zhou, S. Y. ;
Martin, M. C. ;
Lanzara, A. ;
Kaindl, R. A. .
APPLIED PHYSICS LETTERS, 2009, 94 (17)
[3]   Substrate-assisted nucleation of ultra-thin dielectric layers on graphene by atomic layer deposition [J].
Dlubak, B. ;
Kidambi, P. R. ;
Weatherup, R. S. ;
Hofmann, S. ;
Robertson, J. .
APPLIED PHYSICS LETTERS, 2012, 100 (17)
[4]   Terahertz quantum cascade lasers operating up to ∼ 200 K with optimized oscillator strength and improved injection tunneling [J].
Fathololoumi, S. ;
Dupont, E. ;
Chan, C. W. I. ;
Wasilewski, Z. R. ;
Laframboise, S. R. ;
Ban, D. ;
Matyas, A. ;
Jirauschek, C. ;
Hu, Q. ;
Liu, H. C. .
OPTICS EXPRESS, 2012, 20 (04) :3866-3876
[5]   Drude conductivity of Dirac fermions in graphene [J].
Horng, Jason ;
Chen, Chi-Fan ;
Geng, Baisong ;
Girit, Caglar ;
Zhang, Yuanbo ;
Hao, Zhao ;
Bechtel, Hans A. ;
Martin, Michael ;
Zettl, Alex ;
Crommie, Michael F. ;
Shen, Y. Ron ;
Wang, Feng .
PHYSICAL REVIEW B, 2011, 83 (16)
[6]  
Ju L, 2011, NAT NANOTECHNOL, V6, P630, DOI [10.1038/nnano.2011.146, 10.1038/NNANO.2011.146]
[7]  
Kidambi P. R., 2012, PARAMETER SPAC UNPUB
[8]   100-GHz Transistors from Wafer-Scale Epitaxial Graphene [J].
Lin, Y. -M. ;
Dimitrakopoulos, C. ;
Jenkins, K. A. ;
Farmer, D. B. ;
Chiu, H. -Y. ;
Grill, A. ;
Avouris, Ph. .
SCIENCE, 2010, 327 (5966) :662-662
[9]   Gate-Controlled Nonlinear Conductivity of Dirac Fermion in Graphene Field-Effect Transistors Measured by Terahertz Time-Domain Spectroscopy [J].
Maeng, Inhee ;
Lim, Seongchu ;
Chae, Seung Jin ;
Lee, Young Hee ;
Choi, Hyunyong ;
Son, Joo-Hiuk .
NANO LETTERS, 2012, 12 (02) :551-555
[10]   Testing the Sensitivity of Terahertz Spectroscopy to Changes in Molecular and Supramolecular Structure: A Study of Structurally Similar Cocrystals [J].
Parrott, Edward P. J. ;
Zeitler, J. Axel ;
Friscic, Tomislav ;
Pepper, Michael ;
Jones, William ;
Day, Graeme M. ;
Gladden, Lynn F. .
CRYSTAL GROWTH & DESIGN, 2009, 9 (03) :1452-1460