A Classification Algorithm Based on Discriminative Transfer Feature Learning for Early Diagnosis of Alzheimer's Disease

被引:0
作者
Cui, Xinchun [1 ]
Liu, Yonglin [1 ]
Du, Jianzong [2 ]
Sheng, Qinghua [3 ]
Zheng, Xiangwei [4 ]
Feng, Yue [5 ]
Zhuang, Liying [6 ]
Cui, Xiuming [1 ]
Wang, Jing [1 ]
Liu, Xiaoli [6 ]
机构
[1] Qufu Normal Univ, Sch Comp Sci, Rizhao 276826, Peoples R China
[2] Zhejiang Hosp, Dept Resp Med, Hangzhou 310013, Peoples R China
[3] Rizhao Cent Hosp, Pharm Dept, Rizhao 276800, Peoples R China
[4] Shandong Normal Univ, Sch Informat Sci & Engn, Jinan 250358, Peoples R China
[5] Zhejiang Hosp, Dept Radiol, Hangzhou 310013, Peoples R China
[6] Zhejiang Hosp, Dept Neurol, Hangzhou 310013, Peoples R China
来源
INTELLIGENT COMPUTING THEORIES AND APPLICATION (ICIC 2022), PT I | 2022年 / 13393卷
关键词
AD; Mild cognitive impairment; Transfer learning; SVM; REGULARIZATION;
D O I
10.1007/978-3-031-13870-6_34
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper proposes a discriminative transfer feature learning method for MCI conversion prediction using data from the target domain and the auxiliary domain. A transfer component analysis method based on the Maximum Mean Discrepancy (MMD) is proposed at first, which is used to weaken the difference of data distribution between the relevant domain and the target domain. Next, the discriminant optimization term is added to measure the correlation between the sample categories and the sample features of the auxiliary domain, and to improve the inter-class separability of the algorithm. Finally, the support vector machine (SVM) is used to classify MCI patients.
引用
收藏
页码:412 / 419
页数:8
相关论文
共 21 条
[1]   An MRI-Derived Definition of MCI-to-AD Conversion for Long-Term, Automatic Prognosis of MCI Patients [J].
Aksu, Yaman ;
Miller, David J. ;
Kesidis, George ;
Bigler, Don C. ;
Yang, Qing X. .
PLOS ONE, 2011, 6 (10)
[2]   Healthy brain aging: A meeting report from the Sylvan M. Cohen Annual Retreat of the University of Pennsylvania Institute on Aging [J].
Bain, Lisa J. ;
Jedrziewski, Kathy ;
Morrison-Bogorad, Marcelle ;
Albert, Marilyn ;
Cotman, Carl ;
Hendrie, Hugh ;
Trojanowski, John Q. .
ALZHEIMERS & DEMENTIA, 2008, 4 (06) :443-446
[3]  
Belkin M, 2006, J MACH LEARN RES, V7, P2399
[4]   LIBSVM: A Library for Support Vector Machines [J].
Chang, Chih-Chung ;
Lin, Chih-Jen .
ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2011, 2 (03)
[5]   Multi-Domain Transfer Learning for Early Diagnosis of Alzheimer's Disease [J].
Cheng, Bo ;
Liu, Mingxia ;
Shen, Dinggang ;
Li, Zuoyong ;
Zhang, Daoqiang .
NEUROINFORMATICS, 2017, 15 (02) :115-132
[6]   Multimodal manifold-regularized transfer learning for MCI conversion prediction [J].
Cheng, Bo ;
Liu, Mingxia ;
Suk, Heung-Il ;
Shen, Dinggang ;
Zhang, Daoqiang .
BRAIN IMAGING AND BEHAVIOR, 2015, 9 (04) :913-926
[7]   Domain Transfer Learning for MCI Conversion Prediction [J].
Cheng, Bo ;
Liu, Mingxia ;
Zhang, Daoqiang ;
Munsell, Brent C. ;
Shen, Dinggang .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2015, 62 (07) :1805-1817
[8]   Individual subject classification for Alzheimer's disease based on incremental learning using a spatial frequency representation of cortical thickness data [J].
Cho, Youngsang ;
Seong, Joon-Kyung ;
Jeong, Yong ;
Shin, Sung Yong .
NEUROIMAGE, 2012, 59 (03) :2217-2230
[9]  
Colbaugh R, 2017, IEEE ENG MED BIO, P3102, DOI 10.1109/EMBC.2017.8037513
[10]   Automatic classification of patients with Alzheimer's disease from structural MRI: A comparison of ten methods using the ADNI database [J].
Cuingnet, Remi ;
Gerardin, Emilie ;
Tessieras, Jerome ;
Auzias, Guillaume ;
Lehericy, Stephane ;
Habert, Marie-Odile ;
Chupin, Marie ;
Benali, Habib ;
Colliot, Olivier .
NEUROIMAGE, 2011, 56 (02) :766-781