Antiparallel DNA double crossover molecules as components for nanoconstruction

被引:205
作者
Li, XJ [1 ]
Yang, XP [1 ]
Qi, J [1 ]
Seeman, NC [1 ]
机构
[1] NYU,DEPT CHEM,NEW YORK,NY 10003
关键词
D O I
10.1021/ja960162o
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Double crossover molecules are DNA structures containing two Holliday junctions connected by two double helical arms. There are several types of double crossover molecules, differentiated by the relative orientations of their helix axes, parallel or antiparallel, and by the number of double helical half-turns (even or odd) between the two crossovers. We have examined these molecules from the viewpoint of their potential utility in nanoconstruction. Whereas the parallel double helical molecules are usually not well behaved, we have focused on the antiparallel molecules; antiparallel molecules with an even number of half turns between crossovers (termed DAE molecules) produce a reporter strand when ligated, so these have been characterized in a ligation cyclization assay. In contrast to other molecules that contain branched junctions, we find that these molecules cyclize rarely or not at all. The double crossover molecules cyclize no more readily than the linear molecule containing the same sequence as the ligation domain. We have tested both a conventional DAE molecule and one containing a bulged three-arm branched junction between the crossovers. The conventional DAE molecule appears to be slightly stiffer, but so few cyclic products are obtained in either case that quantitative comparisons are not possible. Thus, it appears that these molecules may be able to serve as the rigid components that are needed to assemble symmetric molecular structures, such as periodic lattices. We suggest that they be combined with DNA triangles and deltahedra in order to accomplish this goal.
引用
收藏
页码:6131 / 6140
页数:10
相关论文
共 51 条
[1]   MOLECULAR COMPUTATION OF SOLUTIONS TO COMBINATORIAL PROBLEMS [J].
ADLEMAN, LM .
SCIENCE, 1994, 266 (5187) :1021-1024
[2]   REFINEMENT OF STRUCTURE OF B-DNA AND IMPLICATIONS FOR ANALYSIS OF X-RAY-DIFFRACTION DATA FROM FIBERS OF BIOPOLYMERS [J].
ARNOTT, S ;
HUKINS, DWL .
JOURNAL OF MOLECULAR BIOLOGY, 1973, 81 (02) :93-105
[3]   GENE SYNTHESIS MACHINES - DNA CHEMISTRY AND ITS USES [J].
CARUTHERS, MH .
SCIENCE, 1985, 230 (4723) :281-285
[4]   SYNTHESIS FROM DNA OF A MOLECULE WITH THE CONNECTIVITY OF A CUBE [J].
CHEN, JH ;
SEEMAN, NC .
NATURE, 1991, 350 (6319) :631-633
[5]   CONSTRUCTION AND ANALYSIS OF MONOMOBILE DNA JUNCTIONS [J].
CHEN, JH ;
CHURCHILL, MEA ;
TULLIUS, TD ;
KALLENBACH, NR ;
SEEMAN, NC .
BIOCHEMISTRY, 1988, 27 (16) :6032-6038
[6]   A SPECIFIC QUADRILATERAL SYNTHESIZED FROM DNA BRANCHED JUNCTIONS [J].
CHEN, JH ;
KALLENBACH, NR ;
SEEMAN, NC .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1989, 111 (16) :6402-6407
[7]   A HOLLIDAY RECOMBINATION INTERMEDIATE IS TWOFOLD SYMMETRIC [J].
CHURCHILL, MEA ;
TULLIUS, TD ;
KALLENBACH, NR ;
SEEMAN, NC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1988, 85 (13) :4653-4656
[8]   CONSTRUCTION OF BIOLOGICALLY FUNCTIONAL BACTERIAL PLASMIDS IN-VITRO [J].
COHEN, SN ;
CHANG, ACY ;
BOYER, HW ;
HELLING, RB .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1973, 70 (11) :3240-3244
[9]   MOLECULAR ENGINEERING - AN APPROACH TO THE DEVELOPMENT OF GENERAL CAPABILITIES FOR MOLECULAR MANIPULATION [J].
DREXLER, KE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-PHYSICAL SCIENCES, 1981, 78 (09) :5275-5278
[10]   DNA JUNCTIONS, ANTIJUNCTIONS, AND MESOJUNCTIONS [J].
DU, SM ;
ZHANG, SW ;
SEEMAN, NC .
BIOCHEMISTRY, 1992, 31 (45) :10955-10963