On the information function of an error-correcting code

被引:24
作者
Helleseth, T [1 ]
Klove, T [1 ]
Levenshtein, VI [1 ]
机构
[1] MV KELDYSH APPL MATH INST,MOSCOW 125047,RUSSIA
关键词
information function; linear code; support weight; weight hierarchy;
D O I
10.1109/18.556112
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The information function e(h) of a code is the average amount of information contained in h positions of the codewords. Upper and lower bounds on the information function of binary linear codes are given. The average value and variance of the information function over all [n, k] codes are determined.
引用
收藏
页码:549 / 557
页数:9
相关论文
共 12 条
[1]  
[Anonymous], 1965, MATH SCAND
[2]  
CARLITZ L, 1966, MATH SCAND, V19, P38
[3]  
Clark G.C., 1981, Error-Correction Coding for Digital Communications
[4]   DIMENSION LENGTH PROFILES AND TRELLIS COMPLEXITY OF LINEAR BLOCK-CODES [J].
FORNEY, GD .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1994, 40 (06) :1741-1752
[5]   WEIGHT DISTRIBUTION OF IRREDUCIBLE CYCLIC CODES WITH BLOCK LENGTHS N1((Q1-1)-N) [J].
HELLESETH, T ;
KLOVE, T ;
MYKKELTVEIT, J .
DISCRETE MATHEMATICS, 1977, 18 (02) :179-211
[6]   BOUNDS ON THE MINIMUM SUPPORT WEIGHTS [J].
HELLESETH, T ;
KLOVE, T ;
LEVENSHTEIN, VI ;
YTREHUS, O .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1995, 41 (02) :432-440
[7]   ON THE OPTIMUM BIT ORDERS WITH RESPECT TO THE STATE COMPLEXITY OF TRELLIS DIAGRAMS FOR BINARY LINEAR CODES [J].
KASAMI, T ;
TAKATA, T ;
FUJIWARA, T ;
LIN, S .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1993, 39 (01) :242-245
[9]   KRAWTCHOUK POLYNOMIALS AND UNIVERSAL BOUNDS FOR CODES AND DESIGNS IN HAMMING-SPACES [J].
LEVENSHTEIN, VI .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1995, 41 (05) :1303-1321
[10]   THE EFFECTIVE LENGTH OF SUBCODES [J].
SIMONIS, J .
APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 1994, 5 (06) :371-377