THE CLASSIFICATION OF ALMOST SIMPLE 3/2-TRANSITIVE GROUPS

被引:18
作者
Bamberg, John [1 ]
Giudici, Michael [1 ]
Liebeck, Martin W. [2 ]
Praeger, Cheryl E. [1 ,3 ]
Saxl, Jan [4 ]
机构
[1] Univ Western Australia, Sch Math & Stat, Ctr Math Symmetry & Computat, Crawley, WA 6009, Australia
[2] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2BZ, England
[3] King Abdulaziz Univ, Jeddah 21413, Saudi Arabia
[4] Univ Cambridge, DPMMS, CMS, Cambridge CB3 0WB, England
基金
澳大利亚研究理事会;
关键词
PRIMITIVE PERMUTATION-GROUPS; FINITE EXCEPTIONAL GROUPS; FIXED-POINT RATIOS; MAXIMAL-SUBGROUPS; BASE SIZES; IRREDUCIBLE SUBGROUPS; LIE TYPE; RANK; REPRESENTATIONS; OVERGROUPS;
D O I
10.1090/S0002-9947-2013-05758-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A finite transitive permutation group is said to be 3/2-transitive if all the nontrivial orbits of a point stabiliser have the same size greater than 1. Examples include the 2-transitive groups, Frobenius groups and several other less obvious ones. We prove that 3/2-transitive groups are either affine or almost simple, and classify the latter. One of the main steps in the proof is an arithmetic result on the subdegrees of groups of Lie type in characteristic p: with some explicitly listed exceptions, every primitive action of such a group is either 2-transitive, or has a subdegree divisible by p.
引用
收藏
页码:4257 / 4311
页数:55
相关论文
共 67 条
[1]  
Alavi Seyed Hassan, PREPRINT
[2]  
[Anonymous], [No title captured]
[3]  
[Anonymous], 1977, J FS U TOKYO
[4]  
ASCHBACHER M, 1976, NAGOYA MATH J, V63, P1
[5]   ON THE MAXIMAL-SUBGROUPS OF THE FINITE CLASSICAL-GROUPS [J].
ASCHBACHER, M .
INVENTIONES MATHEMATICAE, 1984, 76 (03) :469-514
[6]   CHARACTER TABLES OF THE ASSOCIATION SCHEMES OF FINITE ORTHOGONAL GROUPS ACTING ON THE NONISOTROPIC POINTS [J].
BANNAI, E ;
HAO, S ;
SONG, SY .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1990, 54 (02) :164-200
[7]   Maximal overgroups of singer elements in classical groups [J].
Bereczky, A .
JOURNAL OF ALGEBRA, 2000, 234 (01) :187-206
[8]   The Magma algebra system .1. The user language [J].
Bosma, W ;
Cannon, J ;
Playoust, C .
JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) :235-265
[9]  
Brouwer A. E., 1989, ERGEBNISSE MATH IHRE, V18
[10]  
Burness TC, 2007, J ALGEBRA, V309, P80, DOI 10.1016/j.jalgebra.2006.05.025