Infinite groups with many permutable subgroups

被引:22
作者
Ballester-Bolinches, A. [1 ]
Kurdachenko, L. A. [2 ]
Otal, J. [3 ]
Pedraza, T. [4 ]
机构
[1] Univ Valencia, Dept Algebra, E-46100 Burjassot, Valencia, Spain
[2] Natl Dnepropetrovsk Univ, Dept Algebra, UA-49050 Dnepropetrovsk, Ukraine
[3] Univ Zaragoza, Dept Matemat, E-50009 Zaragoza, Spain
[4] Univ Politecn Valencia, Escuela Tecn Super Informat Aplicada, Dept Matemat Aplicada, Valencia 46022, Spain
关键词
Radical groups; hyper-chi-groups; AP-groups; PT-groups;
D O I
10.4171/RMI/555
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A subgroup H of a group G is said to be permutable in G, if HK = KH for every subgroup K of G. A result due to Stonehewer asserts that every permutable subgroup is ascendant although the converse is false. In this paper we study some infinite groups whose ascendant subgroups are permutable (AP-groups). We show that the structure of radical hyperfinite AP-groups behave as that of finite soluble groups in which the relation to be a permutable subgroup is transitive (PT-groups).
引用
收藏
页码:745 / 764
页数:20
相关论文
共 19 条
[1]   Finite soluble groups with permutable subnormal subgroups [J].
Alejandre, MJ ;
Ballester-Bolinches, A ;
Pedraza-Aguilera, MC .
JOURNAL OF ALGEBRA, 2001, 240 (02) :705-722
[2]   On periodic radical groups in which permutability is a transitive relation [J].
Ballester-Bolinches, A. ;
Kurdachenko, L. A. ;
Pedraza, Tatiana .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2007, 210 (03) :665-671
[3]  
BALLESTERBOLINC.A, 2003, ADV ALGEBRA, P38
[4]   Criteria for permutability to be transitive in finite groups [J].
Beidleman, JC ;
Brewster, B ;
Robinson, DJS .
JOURNAL OF ALGEBRA, 1999, 222 (02) :400-412
[5]  
Chernikov S. N, 1955, MAT SBORNIK, V37, P557
[6]  
Dixon MR., 1994, SYLOW THEORY FORMATI, DOI 10.1142/2386
[7]  
Gaschutz W., 1957, J REINE ANGEW MATH, V198, P87, DOI [DOI 10.1515/CRLL.1957.198.87, DOI 10.1515/CR11.1957.198.87]
[8]  
Gorenstein D., 2007, FINITE GROUPS
[9]  
HUPPERT B, 1961, ARCH MATH, V12, P161
[10]  
Kargapolov M. I., 1963, ALGEBRA LOGIKA+, V2, P19