Conservation of Transit Peptide-Independent Protein Import into the Mitochondrial and Hydrogenosomal Matrix

被引:43
作者
Garg, Sriram [1 ]
Stoelting, Jan [1 ]
Zimorski, Verena [1 ]
Rada, Petr [2 ]
Tachezy, Jan [2 ]
Martin, William F. [1 ]
Gould, Sven B. [1 ]
机构
[1] Univ Dusseldorf, Inst Mol Evolut, Dusseldorf, Germany
[2] Charles Univ Prague, Dept Parasitol, Fac Sci, CR-11636 Prague 1, Czech Republic
关键词
mitochondria; hydrogenosomes; mitosomes; protein import; TOM/TIM; TRICHOMONAS-VAGINALIS; GENOME SEQUENCE; INNER MEMBRANE; GENE; EVOLUTION; ORIGIN; TRANSLOCATION; LOCALIZATION; TRANSPORT; ORGANELLE;
D O I
10.1093/gbe/evv175
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The origin of protein import was a key step in the endosymbiotic acquisition of mitochondria. Though the main translocon of the mitochondrial outer membrane, TOM40, is ubiquitous among organelles of mitochondrial ancestry, the transit peptides, or N-terminal targeting sequences (NTSs), recognised by the TOM complex, are not. To better understand the nature of evolutionary conservation in mitochondrial protein import, we investigated the targeting behavior of Trichomonas vaginalis hydrogenosomal proteins in Saccharomyces cerevisiae and vice versa. Hydrogenosomes import yeast mitochondrial proteins even in the absence of their native NTSs, but do not import yeast cytosolic proteins. Conversely, yeast mitochondria import hydrogenosomal proteins with and without their short NTSs. Conservation of an NTS-independent mitochondrial import route from excavates to opisthokonts indicates its presence in the eukaryote common ancestor. Mitochondrial protein import is known to entail electrophoresis of positively charged NTSs across the electrochemical gradient of the inner mitochondrial membrane. Our present findings indicate that mitochondrial transit peptides, which readily arise from random sequences, were initially selected as a signal for charge-dependent protein targeting specifically to the mitochondrial matrix. Evolutionary loss of the electron transport chain in hydrogenosomes and mitosomes lifted the selective constraints that maintain positive charge in NTSs, allowing first the NTS charge, and subsequently the NTS itself, to be lost. This resulted in NTS-independent matrix targeting, which is conserved across the evolutionary divide separating trichomonads and yeast, and which we propose is the ancestral state of mitochondrial protein import.
引用
收藏
页码:2716 / 2726
页数:11
相关论文
共 58 条
[1]   GiardiaDB and TrichDB: integrated genomic resources for the eukaryotic protist pathogens Giardia lamblia and Trichomonas vaginalis [J].
Aurrecoechea, Cristina ;
Brestelli, John ;
Brunk, Brian P. ;
Carlton, Jane M. ;
Dommer, Jennifer ;
Fischer, Steve ;
Gajria, Bindu ;
Gao, Xin ;
Gingle, Alan ;
Grant, Greg ;
Harb, Omar S. ;
Heiges, Mark ;
Innamorato, Frank ;
Iodice, John ;
Kissinger, Jessica C. ;
Kraemer, Eileen ;
Li, Wei ;
Miller, John A. ;
Morrison, Hilary G. ;
Nayak, Vishal ;
Pennington, Cary ;
Pinney, Deborah F. ;
Roos, David S. ;
Ross, Chris ;
Stoeckert, Christian J., Jr. ;
Sullivan, Steven ;
Treatman, Charles ;
Wang, Haiming .
NUCLEIC ACIDS RESEARCH, 2009, 37 :D526-D530
[3]   A Machine Learning Approach To Identify Hydrogenosomal Proteins in Trichomonas vaginalis [J].
Burstein, David ;
Gould, Sven B. ;
Zimorski, Verena ;
Kloesges, Thorsten ;
Kiosse, Fuat ;
Major, Peter ;
Martin, William F. ;
Pupko, Tal ;
Dagan, Tal .
EUKARYOTIC CELL, 2012, 11 (02) :217-228
[4]   Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis [J].
Carlton, Jane M. ;
Hirt, Robert P. ;
Silva, Joana C. ;
Delcher, Arthur L. ;
Schatz, Michael ;
Zhao, Qi ;
Wortman, Jennifer R. ;
Bidwell, Shelby L. ;
Alsmark, U. Cecilia M. ;
Besteiro, Sebastien ;
Sicheritz-Ponten, Thomas ;
Noel, Christophe J. ;
Dacks, Joel B. ;
Foster, Peter G. ;
Simillion, Cedric ;
Van de Peer, Yves ;
Miranda-Saavedra, Diego ;
Barton, Geoffrey J. ;
Westrop, Gareth D. ;
Mueller, Sylke ;
Dessi, Daniele ;
Fiori, Pier Luigi ;
Ren, Qinghu ;
Paulsen, Ian ;
Zhang, Hanbang ;
Bastida-Corcuera, Felix D. ;
Simoes-Barbosa, Augusto ;
Brown, Mark T. ;
Hayes, Richard D. ;
Mukherjee, Mandira ;
Okumura, Cheryl Y. ;
Schneider, Rachel ;
Smith, Alias J. ;
Vanacova, Stepanka ;
Villalvazo, Maria ;
Haas, Brian J. ;
Pertea, Mihaela ;
Feldblyum, Tamara V. ;
Utterback, Terry R. ;
Shu, Chung-Li ;
Osoegawa, Kazutoyo ;
de Jong, Pieter J. ;
Hrdy, Ivan ;
Horvathova, Lenka ;
Zubacova, Zuzana ;
Dolezal, Pavel ;
Malik, Shehre-Banoo ;
Logsdon, John M., Jr. ;
Henze, Katrin ;
Gupta, Arti .
SCIENCE, 2007, 315 (5809) :207-212
[5]   Importing Mitochondrial Proteins: Machineries and Mechanisms [J].
Chacinska, Agnieszka ;
Koehler, Carla M. ;
Milenkovic, Dusanka ;
Lithgow, Trevor ;
Pfanner, Nikolaus .
CELL, 2009, 138 (04) :628-644
[6]   Evolution of the molecular machines for protein import into mitochondria [J].
Dolezal, Pavel ;
Likic, Vladimir ;
Tachezy, Jan ;
Lithgow, Trevor .
SCIENCE, 2006, 313 (5785) :314-318
[7]   Mitochondrial DNA ligase function in Saccharomyces cerevisiae [J].
Donahue, SL ;
Corner, BE ;
Bordone, L ;
Campbell, C .
NUCLEIC ACIDS RESEARCH, 2001, 29 (07) :1582-1589
[8]   Predicting subcellular localization of proteins based on their N-terminal amino acid sequence [J].
Emanuelsson, O ;
Nielsen, H ;
Brunak, S ;
von Heijne, G .
JOURNAL OF MOLECULAR BIOLOGY, 2000, 300 (04) :1005-1016
[9]  
Endo T, 2009, BIOCHIM BIOPHYS ACTA, V1803, P706
[10]   Mitochondrial protein import - Requirement of presequence elements and TOM components for precursor binding to the TOM complex [J].
Esaki, M ;
Shimizu, H ;
Ono, T ;
Yamamoto, H ;
Kanamori, T ;
Nishikawa, S ;
Endo, T .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (44) :45701-45707