On-line Bayesian System Identification

被引:0
作者
Romeres, D. [1 ]
Prando, G. [1 ]
Pillonetto, G. [1 ]
Chiuso, A. [1 ]
机构
[1] Univ Padua, Dept Informat Engn, Padua, Italy
来源
2016 EUROPEAN CONTROL CONFERENCE (ECC) | 2016年
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider an on-line system identification scenario in which new data become available at given times. In order to meet real-time estimation requirements, we propose a tailored Bayesian system identification procedure in which the hyper-parameters are estimated through one-step-updates of an algorithm optimizing the Marginal Likelihood. To this purpose both gradient methods and an EM algorithm are considered. We compare this "1-step" procedure with the standard one, in which the optimization method is run until convergence to a local minimum. The experiments confirm the effectiveness of this approach.
引用
收藏
页码:1359 / 1364
页数:6
相关论文
共 15 条
[1]  
[Anonymous], P SYSID 2012
[2]   2-POINT STEP SIZE GRADIENT METHODS [J].
BARZILAI, J ;
BORWEIN, JM .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1988, 8 (01) :141-148
[3]  
Bishop C., 2006, Pattern recognition and machine learning, P423
[4]  
Bonettini S., 2015, SIAM J SCI IN PRESS
[5]  
Bottegal G., 2014, CORR
[6]   Implementation of algorithms for tuning parameters in regularized least squares problems in system identification [J].
Chen, Tianshi ;
Ljung, Lennart .
AUTOMATICA, 2013, 49 (07) :2213-2220
[7]   On the estimation of transfer functions, regularizations and Gaussian processes-Revisited [J].
Chen, Tianshi ;
Ohlsson, Henrik ;
Ljung, Lennart .
AUTOMATICA, 2012, 48 (08) :1525-1535
[8]  
Ljung L., 1999, SYSTEM IDENTIFICATIO, DOI DOI 10.1002/047134608X.W1046.PUB2
[9]  
Ljung Lennart, 1983, THEORY PRACTICE RECU, V5
[10]  
Nocedal J, 2006, SPRINGER SER OPER RE, P1, DOI 10.1007/978-0-387-40065-5