Morphology-Controlled Metal Sulfides and Phosphides for Electrochemical Water Splitting

被引:607
作者
Joo, Jinwhan [1 ]
Kim, Taekyung [1 ]
Lee, Jaeyoung [1 ]
Choi, Sang-Il [2 ,3 ]
Lee, Kwangyeol [1 ]
机构
[1] Korea Univ, Dept Chem, Seoul 02841, South Korea
[2] Kyungpook Natl Univ, Dept Chem, Daegu 41566, South Korea
[3] Kyungpook Natl Univ, Green Nano Mat Res Ctr, Daegu 41566, South Korea
基金
新加坡国家研究基金会;
关键词
electrolysis; facet-controlled; hollow structures; metal phosphides; metal sulfides; HYDROGEN EVOLUTION REACTION; ENHANCED ELECTROCATALYTIC ACTIVITY; HIGHLY-ACTIVE ELECTROCATALYSIS; OXYGEN-EVOLUTION; EFFICIENT ELECTROCATALYST; HIGH-PERFORMANCE; COBALT SULFIDE; NICKEL SULFIDE; BIFUNCTIONAL ELECTROCATALYSTS; MOLYBDENUM PHOSPHIDE;
D O I
10.1002/adma.201806682
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Because H-2 is considered a promising clean energy source, water electrolysis has attracted great interest in related research and technology. Noble-metal-based catalysts are used as electrode materials in water electrolyzers, but their high cost and low abundance have impeded them from being used in practical areas. Recently, metal sulfides and phosphides based on earth-abundant transition metals have emerged as promising candidates for efficient water-splitting catalysts. Most studies have focused on adjusting the composition of the metal sulfides and phosphides to enhance the catalytic performance. However, morphology control of catalysts, including faceted and hollow structures, is much less explored for these systems because of difficulties in the synthesis, which requires a deep understanding of the nanocrystal growth process. Herein, representative synthetic methods for morphology-controlled metal sulfides and phosphides are introduced to provide insights into these methodologies. The electrolytic performance of morphology-controlled metal sulfide- and phosphide-based nanocatalysts with enhanced surface area and intrinsically high catalytic activity is also summarized and the future research directions for this promising catalyst group is discussed.
引用
收藏
页数:23
相关论文
共 136 条
[1]   Global warming and changes in risk of concurrent climate extremes: Insights from the 2014 California drought [J].
AghaKouchak, Amir ;
Cheng, Linyin ;
Mazdiyasni, Omid ;
Farahmand, Alireza .
GEOPHYSICAL RESEARCH LETTERS, 2014, 41 (24) :8847-8852
[2]   High-Quality Copper Sulfide Nanocrystals with Diverse Shapes and Their Catalysis for Electrochemical Reduction of H2O2 [J].
An, Li ;
Huang, Liang ;
Liu, Hongyan ;
Xi, Pinxian ;
Chen, Fengjuan ;
Du, Yaping .
PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION, 2015, 32 (05) :536-541
[3]   Recent Trends and Perspectives in Electrochemical Water Splitting with an Emphasis on Sulfide, Selenide, and Phosphide Catalysts of Fe, Co, and Ni: A Review [J].
Anantharaj, Sengeni ;
Ede, Sivasankara Rao ;
Sakthikumar, Kuppan ;
Karthick, Kannimuthu ;
Mishra, Soumyaranjan ;
Kundu, Subrata .
ACS CATALYSIS, 2016, 6 (12) :8069-8097
[4]  
[Anonymous], AM SOC MECH ENG
[5]  
[Anonymous], CHEM MAT
[6]   THE ELECTROCATALYSIS OF OXYGEN EVOLUTION ON PEROVSKITES [J].
BOCKRIS, JO ;
OTAGAWA, T .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1984, 131 (02) :290-302
[8]   Nanostructured Co2P Electrocatalyst for the Hydrogen Evolution Reaction and Direct Comparison with Morphologically Equivalent CoP [J].
Callejas, Juan F. ;
Read, Carlos G. ;
Popczun, Eric J. ;
McEnaney, Joshua M. ;
Schaak, Raymond E. .
CHEMISTRY OF MATERIALS, 2015, 27 (10) :3769-3774
[9]   Direct observation of the oxygenated species during oxygen reduction on a platinum fuel cell cathode [J].
Casalongue, Hernan Sanchez ;
Kaya, Sarp ;
Viswanathan, Venkatasubramanian ;
Miller, Daniel J. ;
Friebel, Daniel ;
Hansen, Heine A. ;
Norskov, Jens K. ;
Nilsson, Anders ;
Ogasawara, Hirohito .
NATURE COMMUNICATIONS, 2013, 4
[10]   In Situ Electrochemical Oxidation Tuning of Transition Metal Disulfides to Oxides for Enhanced Water Oxidation [J].
Chen, Wei ;
Wang, Haotian ;
Li, Yuzhang ;
Liu, Yayuan ;
Sun, Jie ;
Lee, Sanghan ;
Lee, Jang-Soo ;
Cui, Yi .
ACS CENTRAL SCIENCE, 2015, 1 (05) :244-251