VLSI implementations of low-power leading-one detector circuits

被引:14
作者
Abed, Khalid H. [1 ]
Siferd, Raymond E. [2 ]
机构
[1] Jackson State Univ, Dept Comp Engn, Jackson, MS 39217 USA
[2] Wright State Univ, Dept Elect Engn, Dayton, OH 45435 USA
来源
PROCEEDINGS OF THE IEEE SOUTHEASTCON 2006 | 2006年
关键词
D O I
10.1109/second.2006.1629364
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents two approaches to design leading-one detector (LOD) circuits, which locate the leading-one position in a binary word. The first approach provides fast leading-one detectors (LODs), and the second emphasizes the design of novel hardware-efficient and low-power LODs. Each approach is used to obtain 0.6 mu m CMOS VLSI implementations of 16-, 32-, and 64-bit LOD circuits. Simulations of the 16-, 32-, and 64-bit fast LODs run at 310, 265, and 215 MHz, respectively. The 16-, 32-,and 64-bit low-power LODs consume 14.85, 44.70, and 61.67 milliwatts, respectively while operating at VDD equal to 5 volts and their maximum speed.
引用
收藏
页码:279 / 284
页数:6
相关论文
共 13 条
[1]  
BRUGUERA J, 1999, IEEE T COMPUT, P298
[2]   Leading-one Prediction scheme for latency improvement in single datapath floating-point adders [J].
Bruguera, JD ;
Lang, T .
INTERNATIONAL CONFERENCE ON COMPUTER DESIGN: VLSI IN COMPUTERS AND PROCESSORS, PROCEEDINGS, 1998, :298-305
[3]   COMPUTATION OF BASE 2 LOGARITHM OF BINARY NUMBERS [J].
COMBET, M ;
VANZONNE.H ;
VERBEEK, L .
IEEE TRANSACTIONS ON ELECTRONIC COMPUTERS, 1965, EC14 (06) :863-&
[4]  
FRANGAKIS GP, 1983, P IEE SEP, P169
[5]  
HOEFFLINGER B, 1991, ELECTRON LETT, P1132
[6]  
Mitchell J. N., 1962, IRE T ELECTRON COMPU, VEC-11, P512, DOI [DOI 10.1109/TEC.1962.5219391, 10.1109/TEC.1962.5219391]
[7]  
OKLOBDZIJA V, 1993, IEEE T VLSI SYST, P124
[8]  
OKLOBDZIJA V, 1992, P 26 IEEE AS C SIGN, P391
[9]  
OKLOBDZIJA V, 1997, IEEE J SOLID-ST CIRC, P292
[10]  
SanGregory S. L., 1999, IEEE MIDW S CIRC SYS