Robust Demographic Inference from Genomic and SNP Data

被引:1021
作者
Excoffier, Laurent [1 ,2 ]
Dupanloup, Isabelle [1 ,2 ]
Huerta-Sanchez, Emilia [3 ]
Sousa, Vitor C. [1 ,2 ]
Foll, Matthieu [1 ,2 ,4 ]
机构
[1] CMPG, Inst Ecol & Evolut, Bern, Switzerland
[2] Swiss Inst Bioinformat, Lausanne, Switzerland
[3] Univ Calif Berkeley, Ctr Theoret Evolutionary Genom, Dept Integrat Biol, Berkeley, CA 94720 USA
[4] Ecole Polytech Fed Lausanne, Sch Life Sci, Lausanne, Switzerland
来源
PLOS GENETICS | 2013年 / 9卷 / 10期
基金
瑞士国家科学基金会;
关键词
APPROXIMATE BAYESIAN COMPUTATION; MAXIMUM-LIKELIHOOD-ESTIMATION; ALLELE FREQUENCY-SPECTRUM; CHAIN MONTE-CARLO; UNSAMPLED POPULATIONS; REVEALS ADAPTATION; MIGRATION RATES; MODEL SELECTION; PARAMETERS; HISTORY;
D O I
10.1371/journal.pgen.1003905
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
We introduce a flexible and robust simulation-based framework to infer demographic parameters from the site frequency spectrum (SFS) computed on large genomic datasets. We show that our composite-likelihood approach allows one to study evolutionary models of arbitrary complexity, which cannot be tackled by other current likelihood-based methods. For simple scenarios, our approach compares favorably in terms of accuracy and speed with partial derivative a partial derivative i, the current reference in the field, while showing better convergence properties for complex models. We first apply our methodology to non-coding genomic SNP data from four human populations. To infer their demographic history, we compare neutral evolutionary models of increasing complexity, including unsampled populations. We further show the versatility of our framework by extending it to the inference of demographic parameters from SNP chips with known ascertainment, such as that recently released by Affymetrix to study human origins. Whereas previous ways of handling ascertained SNPs were either restricted to a single population or only allowed the inference of divergence time between a pair of populations, our framework can correctly infer parameters of more complex models including the divergence of several populations, bottlenecks and migration. We apply this approach to the reconstruction of African demography using two distinct ascertained human SNP panels studied under two evolutionary models. The two SNP panels lead to globally very similar estimates and confidence intervals, and suggest an ancient divergence (>110 Ky) between Yoruba and San populations. Our methodology appears well suited to the study of complex scenarios from large genomic data sets.
引用
收藏
页数:17
相关论文
共 91 条
[1]   Maximum-likelihood estimation of demographic parameters using the frequency spectrum of unlinked single-nucleotide polymorphisms [J].
Adams, AM ;
Hudson, RR .
GENETICS, 2004, 168 (03) :1699-1712
[2]   A Novel Approach for Choosing Summary Statistics in Approximate Bayesian Computation [J].
Aeschbacher, Simon ;
Beaumont, Mark A. ;
Futschik, Andreas .
GENETICS, 2012, 192 (03) :1027-+
[3]   NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION [J].
AKAIKE, H .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) :716-723
[4]   Ascertainment Biases in SNP Chips Affect Measures of Population Divergence [J].
Albrechtsen, Anders ;
Nielsen, Finn Cilius ;
Nielsen, Rasmus .
MOLECULAR BIOLOGY AND EVOLUTION, 2010, 27 (11) :2534-2547
[5]   A map of human genome variation from population-scale sequencing [J].
Altshuler, David ;
Durbin, Richard M. ;
Abecasis, Goncalo R. ;
Bentley, David R. ;
Chakravarti, Aravinda ;
Clark, Andrew G. ;
Collins, Francis S. ;
De la Vega, Francisco M. ;
Donnelly, Peter ;
Egholm, Michael ;
Flicek, Paul ;
Gabriel, Stacey B. ;
Gibbs, Richard A. ;
Knoppers, Bartha M. ;
Lander, Eric S. ;
Lehrach, Hans ;
Mardis, Elaine R. ;
McVean, Gil A. ;
Nickerson, DebbieA. ;
Peltonen, Leena ;
Schafer, Alan J. ;
Sherry, Stephen T. ;
Wang, Jun ;
Wilson, Richard K. ;
Gibbs, Richard A. ;
Deiros, David ;
Metzker, Mike ;
Muzny, Donna ;
Reid, Jeff ;
Wheeler, David ;
Wang, Jun ;
Li, Jingxiang ;
Jian, Min ;
Li, Guoqing ;
Li, Ruiqiang ;
Liang, Huiqing ;
Tian, Geng ;
Wang, Bo ;
Wang, Jian ;
Wang, Wei ;
Yang, Huanming ;
Zhang, Xiuqing ;
Zheng, Huisong ;
Lander, Eric S. ;
Altshuler, David L. ;
Ambrogio, Lauren ;
Bloom, Toby ;
Cibulskis, Kristian ;
Fennell, Tim J. ;
Gabriel, Stacey B. .
NATURE, 2010, 467 (7319) :1061-1073
[6]   THE PSEUDO-MARGINAL APPROACH FOR EFFICIENT MONTE CARLO COMPUTATIONS [J].
Andrieu, Christophe ;
Roberts, Gareth O. .
ANNALS OF STATISTICS, 2009, 37 (02) :697-725
[7]  
[Anonymous], 2011, TECHNICAL DESIGN DOC
[8]  
[Anonymous], 2002, Algorithms for Minimization Without Derivatives
[9]  
[Anonymous], 1994, NUMERICAL RECIPES C
[10]   Recombination rate estimation in the presence of hotspots [J].
Auton, Adam ;
McVean, Gil .
GENOME RESEARCH, 2007, 17 (08) :1219-1227