Process optimization of electrospun silk fibroin fiber mat for accelerated wound healing

被引:40
作者
Chutipakdeevong, Jesada [1 ]
Ruktanonchai, Uracha Rungsardthong [2 ]
Supaphol, Pitt [1 ]
机构
[1] Chulalongkorn Univ, Petr & Petrochem Coll, Bangkok 10330, Thailand
[2] NSTDA, Natl Nanotechnol Ctr, Klongluang 12120, Pathumthani, Thailand
关键词
biomedical applications; biopolymers & renewable polymers; biomaterials;
D O I
10.1002/app.39611
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Considering the outstanding biocompatibility of Bombyx mori silk fibroin, this study is designed to fabricate biomimetic nanofibrous structure made of silk fibroin, which can enhance cell activities for tissue formation. The electrospinning of blend of silk fibroin with low molecular weight poly(ethylene-oxide) (PEO) is explored with ease of preparation for high productivities. The average diameter of electrospun silk fibroin (eSF) is decreased from 414 +/- 73 to 290 +/- 46 nm after PEO extraction. To induce the desired cellular activity, the surface of the eSF fibers is modified with fibronectin by using the carbodiimide chemistry method. The potential use of the obtained wound healing material is assessed by indirect cytotoxicity evaluation on normal human dermal fibroblast (NHDF) in terms of their attachment and cell proliferation. The surface-modified eSF nanofiber mats show good support for cellular adhesion and spreading as a result of fibronectin grafting on the fiber surface, especially for cell migration inside the fibrous structure. These results demonstrate a new fabrication technique of surface-modified silk fibroin electrospun nanofibers for biomedical application; with the ability to accelerate wound healing. (c) 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3634-3644, 2013
引用
收藏
页码:3634 / 3644
页数:11
相关论文
共 32 条
[1]   Use of electrospinning technique for biomedical applications [J].
Agarwal, Seema ;
Wendorff, Joachim H. ;
Greiner, Andreas .
POLYMER, 2008, 49 (26) :5603-5621
[2]   XPS analysis of chemical functions at the surface of Bacillus subtilis [J].
Ahimou, Francois ;
Boonaert, Christophe J. P. ;
Adriaensen, Yasmine ;
Jacques, Philippe ;
Thonart, Philippe ;
Paquot, Michel ;
Rouxhet, Paul G. .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2007, 309 (01) :49-55
[3]   Electrospun Silk Fibroin mats for tissue engineering [J].
Alessandrino, A. ;
Marelli, B. ;
Arosio, C. ;
Fare, S. ;
Tanzi, M. C. ;
Freddi, G. .
ENGINEERING IN LIFE SCIENCES, 2008, 8 (03) :219-225
[4]   Silk-based biomaterials [J].
Altman, GH ;
Diaz, F ;
Jakuba, C ;
Calabro, T ;
Horan, RL ;
Chen, JS ;
Lu, H ;
Richmond, J ;
Kaplan, DL .
BIOMATERIALS, 2003, 24 (03) :401-416
[5]   Surface modification and properties of Bombyx mori silk fibroin films by antimicrobial peptide [J].
Bai, Liqiang ;
Zhu, Liangjun ;
Min, Sijia ;
Liu, Lin ;
Cai, Yurong ;
Yao, Juming .
APPLIED SURFACE SCIENCE, 2008, 254 (10) :2988-2995
[6]   Preparation of non-woven mats from all-aqueous silk fibroin solution with electrospinning method [J].
Chen Chen ;
Cao Chuanbao ;
Ma Xilan ;
Tang Yin ;
Zhu Hesun .
POLYMER, 2006, 47 (18) :6322-6327
[7]   Enhanced differentiation of mesenchymal stem cells co-cultured with ligament fibroblasts on gelatin/silk fibroin hybrid scaffold [J].
Fan, Hongbin ;
Liu, Haifeng ;
Toh, Siew Lok ;
Goh, James C. H. .
BIOMATERIALS, 2008, 29 (08) :1017-1027
[8]   Composite materials based on silk proteins [J].
Hardy, John G. ;
Scheibel, Thomas R. .
PROGRESS IN POLYMER SCIENCE, 2010, 35 (09) :1093-1115
[9]   Silk fibroin as an organic polymer for controlled drug delivery [J].
Hofmann, S ;
Foo, CTWP ;
Rossetti, F ;
Textor, M ;
Vunjak-Novakovic, G ;
Kaplan, DL ;
Merkle, HP ;
Meinel, L .
JOURNAL OF CONTROLLED RELEASE, 2006, 111 (1-2) :219-227
[10]   Human bone marrow stromal cell responses on electrospun silk fibroin mats [J].
Jin, HJ ;
Chen, JS ;
Karageorgiou, V ;
Altman, GH ;
Kaplan, DL .
BIOMATERIALS, 2004, 25 (06) :1039-1047