A Characterization on Potentially K6 - E(K3)-graphic Sequences

被引:0
作者
Yin, Meng-Xiao [1 ]
Yin, Jian-Hua [2 ]
机构
[1] Guangxi Univ, Sch Comp Elect & Informat, Nanning 530004, Peoples R China
[2] Hainan Univ, Sch Informat Sci & Technol, Dept Math, Haikou 570228, Peoples R China
基金
中国国家自然科学基金;
关键词
graph; degree sequence; potentially K-6 - E(K-3)-graphic sequence;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For given a graph H, a graphic sequence pi = (d(1), d(2), ... , d(n)) is said to be potentially H-graphic if there is a realization of pi containing H as a subgraph. In this paper, we characterize potentially K-6 - E(K-3)-graphic sequences without zero terms, where K-6 - E(K-3) is the graph obtained from a complete graph on 6 vertices by deleting three edges which form a triangle. This characterization implies the values of sigma(K-6 - E(K-3), n).
引用
收藏
页码:193 / 206
页数:14
相关论文
共 11 条
  • [1] Erdos P., 1960, Mat. Lapok (N.S.), V11, P264
  • [2] Eschen E., 2004, Australas. J. Combin, V29, P59
  • [3] Gould R.J., 1999, Combinatorics, Graph Theory, and Algorithms, V1, P451
  • [4] Hu LL, 2011, ARS COMBINATORIA, V101, P359
  • [5] Hu LL, 2011, ARS COMBINATORIA, V99, P175
  • [6] Hu LL, 2009, UTILITAS MATHEMATICA, V80, P33
  • [7] On potentially K 5-H-graphic sequences
    Hu, Lili
    Lai, Chunhui
    Wang, Ping
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2009, 59 (01) : 173 - 182
  • [8] Kleitman D. J., 1973, Discrete Mathematics, V6, P79, DOI 10.1016/0012-365X(73)90037-X
  • [9] Li J., 2001, Southeast Asian Bull. Math, V25, P427
  • [10] Two sufficient conditions for a graphic sequence to have a realization with prescribed clique size
    Yin, JH
    Li, HS
    [J]. DISCRETE MATHEMATICS, 2005, 301 (2-3) : 218 - 227