BUSEMANN FUNCTIONS AND THE SPEED OF A SECOND CLASS PARTICLE IN THE RAREFACTION FAN

被引:14
作者
Cator, Eric [1 ]
Pimentel, Leandro P. R. [2 ]
机构
[1] Delft Univ Technol, Delft Inst Appl Math, NL-2628 CD Delft, Netherlands
[2] Univ Fed Rio de Janeiro, Inst Math, BR-21941909 Rio De Janeiro, RJ, Brazil
关键词
TASEP; second class particles; rarefaction fan; BEHAVIOR;
D O I
10.1214/11-AOP709
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we will show how the results found in [Probab. Theory Related Fields 154 (2012) 89-125], about the Busemann functions in last-passage percolation, can be used to calculate the asymptotic distribution of the speed of a single second class particle starting from an arbitrary deterministic configuration which has a rarefaction fan, in either the totally asymetric exclusion process or the Hammersley interacting particle process. The method will be to use the well-known last-passage percolation description of the exclusion process and of the Hammersley process, and then the well-known connection between second class particles and competition interfaces.
引用
收藏
页码:2401 / 2425
页数:25
相关论文
共 20 条
  • [11] Competition interfaces and second class particles
    Ferrari, PA
    Pimentel, LPR
    [J]. ANNALS OF PROBABILITY, 2005, 33 (04) : 1235 - 1254
  • [12] FERRARI PA, 1995, ANN I H POINCARE-PR, V31, P143
  • [13] A PHASE TRANSITION FOR COMPETITION INTERFACES
    Ferrari, Pablo A.
    Martin, James B.
    Pimentel, Leandro P. R.
    [J]. ANNALS OF APPLIED PROBABILITY, 2009, 19 (01) : 281 - 317
  • [14] The motion of a second class particle for the tasep starting from a decreasing shock profile
    Mountford, T
    Guiol, H
    [J]. ANNALS OF APPLIED PROBABILITY, 2005, 15 (02) : 1227 - 1259
  • [15] Newman CM, 1995, PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS, VOLS 1 AND 2, P1017
  • [16] Multitype shape theorems for first passage percolation models
    Pimentel, Leandro P. R.
    [J]. ADVANCES IN APPLIED PROBABILITY, 2007, 39 (01) : 53 - 76
  • [17] THE SUPREMUM AND INFIMUM OF THE POISSON-PROCESS
    PYKE, R
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1959, 30 (02): : 568 - 576
  • [18] NON-EQUILIBRIUM BEHAVIOR OF A MANY-PARTICLE PROCESS - DENSITY PROFILE AND LOCAL EQUILIBRIA
    ROST, H
    [J]. ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1981, 58 (01): : 41 - 53
  • [19] Sepplinen T., 1998, Markov Process. Related Fields, V4, P1
  • [20] Wüthrich MV, 2002, PROG PROBAB, V51, P205