Topological Learning for Semi-Supervised Anomaly Detection in Hyperspectral Imagery

被引:0
作者
Ramirez, Juan, Jr. [1 ]
Armitage, Tristan [1 ]
Bihl, Trevor [1 ]
Kramer, Ryan [1 ]
机构
[1] US Air Force Lab, Wright Patterson AFB, OH 45433 USA
来源
PROCEEDINGS OF THE 2019 IEEE NATIONAL AEROSPACE AND ELECTRONICS CONFERENCE (NAECON) | 2019年
关键词
Mapper Algorithm; Knowledge Representation; Non-linear Dimensionality Reduction; Topological Data Analysis; Explainable Artificial Intelligence; Machine Intelligence; PRINCIPAL COMPONENT ANALYSIS;
D O I
暂无
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Herein, we develop a probabilistic methodology that enables the application of semi-supervised learning over a data architecture for knowledge representation. The data architecture, proposed here, is known as the Topological Hierarchal Decomposition (THD) and is derived from the use of topological compression to decompose data into subsets of increasing attribute similarity. We demonstrate the use of the THD and a probabilistic model for interrogating the THD for object detection in hyperspectral imagery. In particular, we develop a classifier to identify objects that share similar topological attributes with a training reference object.
引用
收藏
页码:560 / 564
页数:5
相关论文
共 18 条
[1]   TOPOLOGY AND DATA [J].
Carlsson, Gunnar .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 46 (02) :255-308
[2]  
Chepushtanova S, 2015, INT GEOSCI REMOTE SE, P449, DOI 10.1109/IGARSS.2015.7325797
[3]  
Cheriyadat A, 2003, INT GEOSCI REMOTE SE, P3420
[4]  
Dillon W.R., 1984, MULTIVARIATE ANAL ME
[5]  
Duponchel L., 2018, REMOTE SENSING MEETS
[6]  
Edelsbrunner H., 2010, Computational Topology, DOI [DOI 10.1090/MBK/069, 10.1090/mbk/069]
[7]  
Eismann M., 2012, Hyperspectral remote sensing
[8]   On the impact of PCA dimension reduction for hyperspectral detection of difficult targets [J].
Farrell, MD ;
Mersereau, RM .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2005, 2 (02) :192-195
[9]  
Fasy BT, 2016, INT CONF ACOUST SPEE, P6430, DOI 10.1109/ICASSP.2016.7472915
[10]   Principal Component Reconstruction Error for Hyperspectral Anomaly Detection [J].
Jablonski, James A. ;
Bihl, Trevor J. ;
Bauer, Kenneth W. .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2015, 12 (08) :1725-1729