Projective synchronisation of fractional-order memristive systems with different structures based on active control method

被引:5
作者
Cang, Shijian [1 ]
Chen, Zengqiang [2 ]
Wang, Zenghui [3 ]
Jia, Hongyan [4 ]
机构
[1] Tianjin Univ Sci & Technol, Dept Ind Design, Tianjin 300457, Peoples R China
[2] Nankai Univ, Dept Automat, Tianjin 300071, Peoples R China
[3] Univ S Africa, Dept Elect & Min Engn, ZA-1710 Florida, South Africa
[4] Tianjin Univ Sci & Technol, Dept Automat, Tianjin 300222, Peoples R China
基金
新加坡国家研究基金会; 中国国家自然科学基金;
关键词
memristive system; projective synchronisation; fractional-order; scaling factor; CHAOS; LORENZ; BIFURCATION; EQUATIONS; ROSSLER;
D O I
10.1504/IJSNET.2013.056609
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An active control strategy is proposed to investigate the problem of projective synchronisation of two coupled fractional-order memristive chaotic systems in this paper. Based on the Laplace transform, it is proved that the proposed active controller can realise the projective synchronisation between two fractional-order memristive systems with different structures. The phase portraits and the error curves are also used to verify the effectiveness of the proposed method.
引用
收藏
页码:102 / 108
页数:7
相关论文
共 29 条
[1]   On some Routh-Hurwitz conditions for fractional order differential equations and their applications in Lorenz, Rossler, Chua and Chen systems [J].
Ahmed, E. ;
El-Sayed, A. M. A. ;
El-Saka, Hala A. A. .
PHYSICS LETTERS A, 2006, 358 (01) :1-4
[2]   Fractional-order anisotropic diffusion for image denoising [J].
Bai, Jian ;
Feng, Xiang-Chu .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (10) :2492-2502
[3]   Adaptive control of printing devices using fractional-order hold circuits adjusted through neural networks [J].
Barcena, Rafael ;
Etxebarria, Ainhoa .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2007, 344 (06) :801-812
[4]   Synchronization of neural activity and information processing [J].
Borisyuk, R ;
Borisyuk, G ;
Kazanovich, Y .
BEHAVIORAL AND BRAIN SCIENCES, 1998, 21 (06) :833-+
[5]   A comparative investigation of controlling chaos in a Rossler system [J].
Braun, T ;
Heisler, IA .
PHYSICA A, 2000, 283 (1-2) :136-139
[6]   BIFURCATION AND CHAOS IN THE FRACTIONAL-ORDER CHEN SYSTEM VIA A TIME-DOMAIN APPROACH [J].
Cafagna, Donato ;
Grassi, Giuseppe .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2008, 18 (07) :1845-1863
[7]   Fractional-order Chua's circuit: Time-domain analysis, bifurcation, chaotic behavior and test for chaos [J].
Cafagna, Donato ;
Grassi, Giuseppe .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2008, 18 (03) :615-639
[8]   Observer-based projective synchronization of fractional systems via a scalar signal: application to hyperchaotic Rossler systems [J].
Cafagna, Donato ;
Grassi, Giuseppe .
NONLINEAR DYNAMICS, 2012, 68 (1-2) :117-128
[9]   Yet another chaotic attractor [J].
Chen, GR ;
Ueta, T .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (07) :1465-1466
[10]   MEMRISTOR - MISSING CIRCUIT ELEMENT [J].
CHUA, LO .
IEEE TRANSACTIONS ON CIRCUIT THEORY, 1971, CT18 (05) :507-+