Deep learning-based tree classification using mobile LiDAR data

被引:158
作者
Guan, Haiyan [1 ]
Yu, Yongtao [2 ]
Ji, Zheng [3 ]
Li, Jonathan [2 ]
Zhang, Qi [4 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Coll Geog & Remote Sensing, Nanjing, Jiangsu, Peoples R China
[2] Xiamen Univ, Fujian Key Lab Sensing & Comp Smart Cities, Xiamen, Peoples R China
[3] Wuhan Univ, Sch Remote Sensing & Informat Engn, Wuhan 430072, Peoples R China
[4] Zhejiang Gongshang Univ, Publ Adm Coll, Hangzhou, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
IDENTIFICATION; PARAMETERS; IMAGERY;
D O I
10.1080/2150704X.2015.1088668
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Our work addresses the problem of extracting and classifying tree species from mobile LiDAR data. The work includes tree preprocessing and tree classification. In tree preprocessing, voxel-based upward-growing filtering is proposed to remove ground points from the mobile LiDAR data, followed by a tree segmentation that extracts individual trees via Euclidean distance clustering and voxel-based normalized cut segmentation. In tree classification, first, a waveform representation is developed to model geometric structures of trees. Then, deep learning techniques are used to generate high-level feature abstractions of the trees' waveform representations. Quantitative analysis shows that our algorithm achieves an overall accuracy of 86.1% and a kappa coefficient of 0.8 in classifying urban tree species using mobile LiDAR data. Comparative experiments demonstrate that the uses of waveform representation and deep Boltzmann machines contribute to the improvement of classification accuracies of tree species.
引用
收藏
页码:864 / 873
页数:10
相关论文
共 17 条
[1]   Identification of individual tree crowns from LiDAR data using a circle fitting algorithm with local maxima and minima filtering [J].
Chang, Anjin ;
Eo, Yangdam ;
Kim, Yongmin ;
Kim, Yongil .
REMOTE SENSING LETTERS, 2013, 4 (01) :30-38
[2]   Tree Species Identification in Mixed Baltic Forest Using LiDAR and Multispectral Data [J].
Dinuls, Romans ;
Erins, Gatis ;
Lorencs, Aivars ;
Mednieks, Ints ;
Sinica-Sinavskis, Juris .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2012, 5 (02) :594-603
[3]   A low-cost multi-sensoral mobile mapping system and its feasibility for tree measurements [J].
Jaakkola, Anttoni ;
Hyyppa, Juha ;
Kukko, Antero ;
Yu, Xiaowei ;
Kaartinen, Harri ;
Lehtomaki, Matti ;
Lin, Yi .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2010, 65 (06) :514-522
[4]   Species diversity of three major urban forest types in Guangzhou City, China [J].
Jim, CY ;
Liu, HT .
FOREST ECOLOGY AND MANAGEMENT, 2001, 146 (1-3) :99-114
[5]   Assessing the utility of LiDAR to differentiate among vegetation structural classes [J].
Jones, Trevor G. ;
Coops, Nicholas C. ;
Sharma, Tara .
REMOTE SENSING LETTERS, 2012, 3 (03) :231-238
[6]   Estimating plot volume using lidar height and intensity distributional parameters [J].
Kwak, Doo-Ahn ;
Cui, Guishan ;
Lee, Woo-Kyun ;
Cho, Hyun-Kook ;
Jeon, Seong Woo ;
Lee, Seung-Ho .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2014, 35 (13) :4601-4629
[7]   Classification of tree species based on structural features derived from high density LiDAR data [J].
Li, Jili ;
Hu, Baoxin ;
Noland, Thomas L. .
AGRICULTURAL AND FOREST METEOROLOGY, 2013, 171 :104-114
[8]  
Maas H., 2010, AIRBORNE TERRESTRIAL, P213
[9]   Tree Classification with Fused Mobile Laser Scanning and Hyperspectral Data [J].
Puttonen, Eetu ;
Jaakkola, Anttoni ;
Litkey, Paula ;
Hyyppa, Juha .
SENSORS, 2011, 11 (05) :5158-5182
[10]   Learning with Hierarchical-Deep Models [J].
Salakhutdinov, Ruslan ;
Tenenbaum, Joshua B. ;
Torralba, Antonio .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (08) :1958-1971