Symplectic Field Theories: Scalar and Spinor Representations

被引:2
作者
Costa, Caroline [1 ,2 ]
Tenser, Marcia R. [1 ]
Amorim, Ronni G. G. [1 ,3 ]
Fernandes, Marco C. B. [1 ]
Santana, Ademir E. [1 ]
Vianna, J. David M. [1 ,4 ]
机构
[1] Univ Brasilia, Inst Fis, Int Ctr Phys, BR-70910900 Brasilia, DF, Brazil
[2] Univ Estadual Paulista, Inst Fis Teor, BR-01140070 Sao Paulo, SP, Brazil
[3] Univ Brasilia, Fac Gama, BR-72444240 Brasilia, DF, Brazil
[4] Univ Fed Bahia, Inst Fis, BR-40210340 Salvador, BA, Brazil
关键词
Moyal product; Phase space; Field theory; PHASE-SPACE; QUANTUM-MECHANICS; WIGNER FUNCTIONS; DENSITY-MATRIX; NONCOMMUTATIVE GEOMETRY; PHOTON DISTRIBUTION; QUANTIZATION; ALGEBRA; STATES; LIGHT;
D O I
10.1007/s00006-018-0840-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using elements of symmetry, as gauge invariance, aspects of field theories represented in symplectic space are introduced and analyzed under physical bases. The states of a system are described by symplectic wave functions, which are associated with the Wigner function. Such wave functions are vectors in a Hilbert space introduced from the cotangent-bundle of the Minkowski space. The symplectic Klein-Gordon and the Dirac equations are derived, and a minimum coupling is considered in order to analyze the Landau problem in phase space.
引用
收藏
页数:18
相关论文
共 53 条
[41]   QUANTUM GENERALIZED VLASOV EQUATION [J].
PLACIDO, HQ ;
SANTANA, AE .
PHYSICA A, 1995, 220 (3-4) :552-562
[42]  
Rodrigues WA, 2017, MANY FACES MAXWELL D
[43]   Symmetry groups, density-matrix equations and covariant Wigner functions [J].
Santana, AE ;
Neto, AM ;
Vianna, JDM ;
Khanna, FC .
PHYSICA A, 2000, 280 (3-4) :405-436
[44]   MEASUREMENT OF THE WIGNER DISTRIBUTION AND THE DENSITY-MATRIX OF A LIGHT MODE USING OPTICAL HOMODYNE TOMOGRAPHY - APPLICATION TO SQUEEZED STATES AND THE VACUUM [J].
SMITHEY, DT ;
BECK, M ;
RAYMER, MG ;
FARIDANI, A .
PHYSICAL REVIEW LETTERS, 1993, 70 (09) :1244-1247
[45]   A covariant generalization of the real-time Green's functions method in the theory of kinetic equations [J].
Smolyansky, SA ;
Prozorkevich, AV ;
Maino, G ;
Mashnik, SG .
ANNALS OF PHYSICS, 1999, 277 (02) :193-218
[46]   Quantum field theory on noncommutative spaces [J].
Szabo, RJ .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2003, 378 (04) :207-299
[47]   Special functions in phase space: Mathieu functions [J].
Torres-Vega, G ;
Morales-Guzman, JD ;
Zuniga-Segundo, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (31) :6725-6739
[48]   QUANTUM-MECHANICS IN PHASE-SPACE - NEW APPROACHES TO THE CORRESPONDENCE PRINCIPLE [J].
TORRESVEGA, G ;
FREDERICK, JH .
JOURNAL OF CHEMICAL PHYSICS, 1990, 93 (12) :8862-8874
[49]   Special functions and quantum mechanics in phase space: Airy functions [J].
TorresVega, G ;
ZunigaSegundo, A ;
MoralesGuzman, JD .
PHYSICAL REVIEW A, 1996, 53 (06) :3792-3797
[50]  
VANHOVE L, 1951, MEMOIRES ACADEMIE RO, V26, P1