Symplectic Field Theories: Scalar and Spinor Representations

被引:2
作者
Costa, Caroline [1 ,2 ]
Tenser, Marcia R. [1 ]
Amorim, Ronni G. G. [1 ,3 ]
Fernandes, Marco C. B. [1 ]
Santana, Ademir E. [1 ]
Vianna, J. David M. [1 ,4 ]
机构
[1] Univ Brasilia, Inst Fis, Int Ctr Phys, BR-70910900 Brasilia, DF, Brazil
[2] Univ Estadual Paulista, Inst Fis Teor, BR-01140070 Sao Paulo, SP, Brazil
[3] Univ Brasilia, Fac Gama, BR-72444240 Brasilia, DF, Brazil
[4] Univ Fed Bahia, Inst Fis, BR-40210340 Salvador, BA, Brazil
关键词
Moyal product; Phase space; Field theory; PHASE-SPACE; QUANTUM-MECHANICS; WIGNER FUNCTIONS; DENSITY-MATRIX; NONCOMMUTATIVE GEOMETRY; PHOTON DISTRIBUTION; QUANTIZATION; ALGEBRA; STATES; LIGHT;
D O I
10.1007/s00006-018-0840-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using elements of symmetry, as gauge invariance, aspects of field theories represented in symplectic space are introduced and analyzed under physical bases. The states of a system are described by symplectic wave functions, which are associated with the Wigner function. Such wave functions are vectors in a Hilbert space introduced from the cotangent-bundle of the Minkowski space. The symplectic Klein-Gordon and the Dirac equations are derived, and a minimum coupling is considered in order to analyze the Landau problem in phase space.
引用
收藏
页数:18
相关论文
共 53 条
[1]   The Cangemi-Jackiw manifold in high dimensions and symplectic structure [J].
Abreu, LM ;
Santana, AE ;
Ribeiro, A .
ANNALS OF PHYSICS, 2002, 297 (02) :396-408
[2]   Wigner functions for curved spaces. I. On hyperboloids [J].
Alonso, MA ;
Pogosyan, GS ;
Wolf, KB .
JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (12) :5857-5871
[3]   Non-commutative geometry and symplectic field theory [J].
Amorim, R. G. G. ;
Fernandes, M. C. B. ;
Khanna, F. C. ;
Santana, A. E. ;
Vianna, J. D. M. .
PHYSICS LETTERS A, 2007, 361 (06) :464-471
[4]   Realization of the noncommutative Seiberg-Witten gauge theory by fields in phase space [J].
Amorim, R. G. G. ;
Khanna, F. C. ;
Malbouisson, A. P. C. ;
Malbouisson, J. M. C. ;
Santana, A. E. .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2015, 30 (22)
[5]   The Noncommutative Harmonic Oscillator Based on Symplectic Representation of Galilei Group [J].
Amorim, R. G. G. ;
Ulhoa, S. C. ;
Santana, A. E. .
BRAZILIAN JOURNAL OF PHYSICS, 2013, 43 (1-2) :78-85
[6]   Perturbative symplectic field theory and Wigner function [J].
Amorim, Ronni G. G. ;
Khanna, Faqir C. ;
Santana, Ademir E. ;
Vianna, Jose David M. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2009, 388 (18) :3771-3778
[7]   Poincare-Lie algebra and relativistic phase space [J].
Andrade, MCB ;
Santana, AE ;
Vianna, JDM .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (22) :4015-4024
[8]  
[Anonymous], 1999, Journal of High Energy Physics
[9]   THE NONCOMMUTATIVE GEOMETRY OF THE QUANTUM HALL-EFFECT [J].
BELLISSARD, J ;
VANELST, A ;
SCHULZBALDES, H .
JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (10) :5373-5451
[10]   EXPONENTIAL APPROXIMATION FOR THE DENSITY-MATRIX AND THE WIGNER DISTRIBUTION [J].
BERKOWITZ, M .
CHEMICAL PHYSICS LETTERS, 1986, 129 (05) :486-488