Adaptive EKF-CMAC-Based Multisensor Data Fusion for Maneuvering Target

被引:29
|
作者
Lin, Chih-Min [1 ]
Hsueh, Chi-Shun [1 ]
机构
[1] Yuan Ze Univ, Dept Elect Engn, Tao Yuan 320, Taiwan
关键词
Cerebellar model articulation controller (CMAC); direction of arrival (DOA); extended Kalman filter (EKF); multisensor data fusion; time differences of arrival; TRACKING; MODEL; ALGORITHM; FILTER;
D O I
10.1109/TIM.2013.2247712
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In the multisensor passive location, the direction of arrival (DOA) and time differences of arrival (TDOA) are the most useful detection data. Applying multiple sensors to locate and track a maneuvering target is, in fact, a nonlinear uncertain problem. The extended Kalman filter (EKF) is usually used for maneuvering target tracking; however, this algorithm cannot achieve accurate estimation for uncertain or nonlinear systems. In order to increase the accuracy of locating and tracking of a maneuvering target, this paper proposes a novel EKF-cerebellar-model-articulation-controller (EKF-CMAC) multisensor data fusion algorithm for a 3-D maneuvering target. By combining the EKF with an adaptive CMAC, the tracking error of a maneuvering target can be much reduced. The Monte Carlo numerical simulation results illustrate that the proposed algorithm can achieve high accuracy for locating and tracking a maneuvering target.
引用
收藏
页码:2058 / 2066
页数:9
相关论文
共 50 条
  • [21] Distributed data fusion algorithms for tracking a maneuvering target
    Fong, Li-Wei
    2007 PROCEEDINGS OF THE 10TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION, VOLS 1-4, 2007, : 269 - 276
  • [22] Centralized fusion algorithms based on EKF for multisensor non-linear systems
    Ge, Quan-Bo
    Li, Wen-Bin
    Sun, Ruo-Yu
    Xu, Zi
    Zidonghua Xuebao/Acta Automatica Sinica, 2013, 39 (06): : 816 - 825
  • [23] Adaptive sensor management in multisensor data fusion system
    Wang, Guohong
    He, You
    Yang, Zhi
    Mao, Shiyi
    Lu, Dajin
    Chinese Journal of Electronics, 1999, 8 (02): : 136 - 139
  • [24] Sequence comparison techniques for multisensor data fusion and target recognition
    Libby, EW
    Maybeck, PS
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 1996, 32 (01) : 52 - 65
  • [25] Research on Target Recognition System Based on Multisensor Fusion
    Yu Huijun
    Wang Zhigang
    Liu Xiaoyan
    FIFTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2012): ALGORITHMS, PATTERN RECOGNITION AND BASIC TECHNOLOGIES, 2013, 8784
  • [26] Target localization based on multisensor fusion for mobile robots
    Yang, G. -S.
    Hou, Z. -G.
    Tan, M.
    Yan, H.
    INTERNATIONAL JOURNAL OF ROBOTICS & AUTOMATION, 2006, 21 (03): : 165 - 173
  • [27] Adaptive passive sensor selection for maneuvering target localization and tracking using a multisensor surveillance system
    Hosseini, S. N.
    Haeri, M.
    Khaloozadeh, H.
    COGENT ENGINEERING, 2020, 7 (01):
  • [28] MULTISENSOR DATA FUSION AND DECISION SUPPORT FOR AIRBORNE TARGET IDENTIFICATION
    SARMA, VVS
    RAJU, S
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1991, 21 (05): : 1224 - 1230
  • [29] Reactive tuning of target estimate accuracy in multisensor data fusion
    Xiong, Ning
    Christensen, Henrik
    Svensson, Per
    CYBERNETICS AND SYSTEMS, 2007, 38 (01) : 83 - 103
  • [30] Target localization based on multisensor fusion for mobile robots
    Yang, G.-S.
    Hou, Z.-G.
    Tan, M.
    Yan, H.
    International Journal of Robotics and Automation, 2006, 21 (03) : 165 - 172