Adaptive EKF-CMAC-Based Multisensor Data Fusion for Maneuvering Target

被引:29
|
作者
Lin, Chih-Min [1 ]
Hsueh, Chi-Shun [1 ]
机构
[1] Yuan Ze Univ, Dept Elect Engn, Tao Yuan 320, Taiwan
关键词
Cerebellar model articulation controller (CMAC); direction of arrival (DOA); extended Kalman filter (EKF); multisensor data fusion; time differences of arrival; TRACKING; MODEL; ALGORITHM; FILTER;
D O I
10.1109/TIM.2013.2247712
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In the multisensor passive location, the direction of arrival (DOA) and time differences of arrival (TDOA) are the most useful detection data. Applying multiple sensors to locate and track a maneuvering target is, in fact, a nonlinear uncertain problem. The extended Kalman filter (EKF) is usually used for maneuvering target tracking; however, this algorithm cannot achieve accurate estimation for uncertain or nonlinear systems. In order to increase the accuracy of locating and tracking of a maneuvering target, this paper proposes a novel EKF-cerebellar-model-articulation-controller (EKF-CMAC) multisensor data fusion algorithm for a 3-D maneuvering target. By combining the EKF with an adaptive CMAC, the tracking error of a maneuvering target can be much reduced. The Monte Carlo numerical simulation results illustrate that the proposed algorithm can achieve high accuracy for locating and tracking a maneuvering target.
引用
收藏
页码:2058 / 2066
页数:9
相关论文
共 50 条
  • [1] Multisensor fusion algorithms for maneuvering target tracking
    Fong, Li-Wei
    Fan, Chan-Yu
    2006 1ST IEEE INTERNATIONAL CONFERENCE ON E-LEARNING IN INDUSTRIAL ELECTRONICS, 2006, : 140 - +
  • [2] Multisensor fusion algorithms for maneuvering target tracking
    Fong, Li-Wei
    Fan, Chan-Yu
    2006 1ST IEEE INTERNATIONAL CONFERENCE ON E-LEARNING IN INDUSTRIAL ELECTRONICS, 2006, : 80 - +
  • [3] An M-Estimation EKF-CMAC-Based Algorithm for Robust Position Estimation and Guidance
    Ho, Tan-Jan
    Hsu, Chi-Yang
    Luo, Hua-Yu
    Wu, Meng-Hxien
    2020 INTERNATIONAL AUTOMATIC CONTROL CONFERENCE (CACS), 2020,
  • [4] Target recognition and tracking based on multisensor data fusion
    Yang, Jie
    Lu, Zhenggang
    Huang, Xin
    Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University, 1999, 33 (09): : 1107 - 1110
  • [5] Multisensor Maneuvering Target Fusion Tracking Using Interacting Multiple Model
    Zhao, Baofeng
    AUTOMATIC CONTROL AND COMPUTER SCIENCES, 2024, 58 (03) : 303 - 312
  • [6] Evidential reasoning based on multisensor data fusion for target identification
    Wang, Xin
    Wang, Yunxiao
    Yu, Xiao
    Wang, Zhengxuan
    Pang, Yunjie
    ADAPTIVE AND NATURAL COMPUTING ALGORITHMS, PT 1, 2007, 4431 : 546 - +
  • [7] A multisensor data fusion-based target tracking system
    Mort, N
    Prajitno, P
    IEEE ICIT' 02: 2002 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY, VOLS I AND II, PROCEEDINGS, 2002, : 427 - 432
  • [8] Adaptive multisensor target detection using feature-based fusion
    Kwon, L
    Der, SZ
    Nasrabadi, NM
    OPTICAL ENGINEERING, 2002, 41 (01) : 69 - 80
  • [9] Multisensor target detection using adaptive feature-based fusion
    Kwon, H
    Der, SZ
    Nasrabadi, NM
    AUTOMATIC TARGET RECOGNITION XI, 2001, 4379 : 112 - 123
  • [10] Multisensor data fusion for manoeuvring target tracking
    Chen, YM
    Huang, HC
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2001, 32 (02) : 205 - 214