Blow-up for wave equation with the scale-invariant damping and combined nonlinearities

被引:20
作者
Hamouda, Makram [1 ]
Hamza, Mohamed Ali [1 ]
机构
[1] Imam Abdulrahman Bin Faisal Univ, Dept Basic Sci, Deanship Preparatory Year & Supporting Studies, POB 1982, Dammam, Saudi Arabia
关键词
blow-up; nonlinear wave equations; scale-invariant damping; TIME-DEPENDENT DISSIPATION; GLOBAL EXISTENCE; LIFE-SPAN; STRAUSS EXPONENT; NONEXISTENCE; BEHAVIOR; MASS;
D O I
10.1002/mma.6817
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we study the blow-up of the damped wave equation in the scale-invariant case and in the presence of two nonlinearities. More precisely, we consider the following equation: u(tt) - Delta u + mu/1 + t u(t) = |u(t)|(p) + |u|(q), in R-N x [0, infinity), with small initial data. For mu < N(q-1)/2 and mu is an element of(0, mu(*)), where mu(*) > 0 is depending on the nonlinearties' powers and the space dimension (mu(*) satisfies (q - 1) ((N + 2 mu(*) - 1)p - 2) = 4), we prove that the wave equation, in this case, behaves like the one without dissipation (mu = 0). Our result completes the previous studies in the case where the dissipation is given by mu/(1+t)(beta) u(t); beta > 1, where, contrary to what we obtain in the present work, the effect of the damping is not significant in the dynamics. Interestingly, in our case, the influence of the damping term mu/1+t u(t) is important.
引用
收藏
页码:1127 / 1136
页数:10
相关论文
共 34 条
  • [1] D'Abbicco M., 2015, DISCRETE CONT DYN-A, P312, DOI DOI 10.3934/PROC.2015.0312
  • [2] D'Abbicco M, 2013, ADV NONLINEAR STUD, V13, P867
  • [3] A shift in the Strauss exponent for semilinear wave equations with a not effective damping
    D'Abbicco, Marcello
    Lucente, Sandra
    Reissig, Michael
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (10) : 5040 - 5073
  • [4] The threshold of effective damping for semilinear wave equations
    D'Abbicco, Marcello
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (06) : 1032 - 1045
  • [5] Global existence and lifespan for semilinear wave equations with mixed nonlinear terms
    Dai, Wei
    Fang, Daoyuan
    Wang, Chengbo
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 267 (05) : 3328 - 3354
  • [6] Blow Up for Some Semilinear Wave Equations in Multi-space Dimensions
    Han, Wei
    Zhou, Yi
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2014, 39 (04) : 651 - 665
  • [7] Hidano K, 1995, INDIANA U MATH J, V44, P1273
  • [8] Combined effects of two nonlinearities in lifespan of small solutions to semi-linear wave equations
    Hidano, Kunio
    Wang, Chengbo
    Yokoyama, Kazuyoshi
    [J]. MATHEMATISCHE ANNALEN, 2016, 366 (1-2) : 667 - 694
  • [9] The Glassey conjecture with radially symmetric data
    Hidano, Kunio
    Wang, Chengbo
    Yokoyama, Kazuyoshi
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2012, 98 (05): : 518 - 541
  • [10] Life-span of solutions to semilinear wave equation with time-dependent critical damping for specially localized initial data
    Ikeda, Masahiro
    Sobajima, Motohiro
    [J]. MATHEMATISCHE ANNALEN, 2018, 372 (3-4) : 1017 - 1040