The algebraic surfaces on which the classical Phragmen-Lindelof theorem holds

被引:2
作者
Braun, RW
Meise, R
Taylor, BA
机构
[1] Univ Dusseldorf, Inst Math, D-40225 Dusseldorf, Germany
[2] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
关键词
D O I
10.1007/s00209-005-0913-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let V be an algebraic variety in C-n. We say that V satisfies the strong Phragmen-Lindelof property (SPL) or that the classical Phragmen-Lindelof Theorem holds on V if the following is true: There exists a positive constant A such that each plurisubharmonic function u on V which is bounded above by |z| + o(|z|) on V and by 0 on the real points in V already is bounded by A| Im z|. For algebraic varieties V of pure dimension k we derive necessary conditions on V to satisfy (SPL) and we characterize the curves and surfaces in Cn which satisfy (SPL). Several examples illustrate how these results can be applied.
引用
收藏
页码:387 / 417
页数:31
相关论文
共 17 条
[1]  
BARUN RW, J REINE ANGEW MATH
[2]  
BOCHNAK J, 1987, GEOMETRIC ALGEBRIQUE, V12
[3]   Optimal Gevrey classes for the existence of solution operators for linear partial differential operators in three variables [J].
Braun, RW ;
Meise, R ;
Taylor, BA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 297 (02) :852-868
[4]   The geometry of analytic varieties satisfying the local Phragmen-Lindelof condition and a geometric characterization of the partial differential operators that are surjective on A(R4) [J].
Braun, RW ;
Meise, R ;
Taylor, BA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 356 (04) :1315-1383
[5]  
BRAUN RW, 1992, B UNIONE MAT ITAL, V6A, P339
[6]   Algebraic varieties on which the classical Phragmen-Lindelof estimates hold for plurisubharmonic functions [J].
Braun, RW ;
Meise, R ;
Taylor, BA .
MATHEMATISCHE ZEITSCHRIFT, 1999, 232 (01) :103-135
[7]  
BRAUN RW, 1999, ANN POL MATH, V72, P159
[8]  
BRAUN RW, HIGHER ORDER APPROXI
[9]  
BRAUN RW, IN PRESS CANAD J MAT
[10]  
Chirka E.M., 1989, COMPLEX ANAL SETS