Stress Intensity Factor for Interfacial Cracks in Bi-materials Using Incompatible Numerical Manifold Method

被引:0
作者
Wei Gaofeng [1 ]
Gao Hongfen [2 ]
Jiang Haihui [3 ]
机构
[1] Shandong Inst Light Ind, Inst Engn Mech, Jinan 250353, Peoples R China
[2] Shan Dong Polytech, Dept Engn Mech, Jinan 250104, Peoples R China
[3] Shandong Inst Light Ind, Depy Sci & Technol, Jinan 250104, Peoples R China
来源
ADVANCES IN MATERIALS SCIENCE-BOOK | 2011年 / 327卷
关键词
Incompatible numerical manifold method; Interface crack; Stress intensity factor; Fracture mechanics; Crack tip field; FRACTURE;
D O I
10.4028/www.scientific.net/AMR.327.109
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Incompatible numerical manifold method (INMM) uses interpolation functions based on the concept of partition of unity, and considers the asymptotic solution and the discontinuity of displacement. This paper describes the application of INMM to hi-material interfacial crack. The two dimensional near-tip asymptotic displacement functions are added to the trial function approximation. This enables the domain to be modeled by manifold elements without explicitly meshing the crack surfaces. The crack-tip enrichment functions are chosen as those that span the asymptotic displacement fields for an interfacial crack. The INMM facilitates the incorporation of the oscillatory nature of the singularity within a conforming manifold element approximation. The complex stress intensity factors for bi-material interfacial cracks are numerically evaluated. Good agreement between the numerical results and the analytical solutions for benchmark interfacial crack problems is realized.
引用
收藏
页码:109 / +
页数:2
相关论文
共 50 条
[41]   T-stress evaluation for multiple cracks in FGMs by the numerical manifold method and the interaction integral [J].
Zhang, H. H. ;
Liu, S. M. ;
Han, S. Y. ;
Fan, L. F. .
THEORETICAL AND APPLIED FRACTURE MECHANICS, 2020, 105
[42]   Stress intensity factor computation using the method of fundamental solutions [J].
Karageorghis, A ;
Poullikkas, A ;
Berger, JR .
COMPUTATIONAL MECHANICS, 2006, 37 (05) :445-454
[43]   Stress intensity factor computation using the method of fundamental solutions [J].
A. Karageorghis ;
A. Poullikkas ;
J. R. Berger .
Computational Mechanics, 2006, 37 :445-454
[44]   Determination of stress intensity factors for interfacial cracks using the virtual crack extension approach [J].
So, WMG ;
Lau, KJ ;
Ng, SW .
CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2004, 5 (03) :189-200
[45]   Green's functions for the stress intensity factor evolution in finite cracks in orthotropic materials [J].
Rubio-Gonzalez, C ;
Mason, JJ .
INTERNATIONAL JOURNAL OF FRACTURE, 2001, 108 (04) :317-336
[46]   Green's functions for the stress intensity factor evolution in finite cracks in orthotropic materials [J].
C. Rubio-Gonzalez ;
J.J. Mason .
International Journal of Fracture, 2001, 108 :317-335
[47]   Numerical solution of stress intensity factor in an infinite plate containing parallel double cracks under compression and shear [J].
Zhu, Fengjin ;
Shi, Sheng ;
Ge, Ziwei ;
Shen, Danyi .
THEORETICAL AND APPLIED FRACTURE MECHANICS, 2024, 130
[48]   Numerical Flexibility Determination Method of Stress Intensity Factor for Concrete [J].
Wu, Yongjin ;
Chen, Hu ;
Wang, Xiangdong .
3RD ANNUAL INTERNATIONAL WORKSHOP ON MATERIALS SCIENCE AND ENGINEERING (IWMSE2017), 2017, 250
[49]   Computation of Stress Intensity Factor for Multiple Cracks using Singular Finite Element [J].
Daud, R. ;
Ariffin, A. K. ;
Abdullah, S. ;
Ismail, A. E. ;
Zulkifli, A. .
ADVANCES IN KEY ENGINEERING MATERIALS, 2011, 214 :75-+
[50]   Numerical Simulation of Stress Intensity Factor for Socket Weld Toe Cracks in Small Branch Pipes [J].
Jia, J. H. ;
Zhang, Z. Q. ;
Zhang, C. .
PRESSURE VESSEL TECHNOLOGY: PREPARING FOR THE FUTURE, 2015, 130 :150-157