Engineering nanomedicines using stimuli-responsive biomaterials

被引:68
作者
Wang, Yapei [1 ]
Byrne, James D. [1 ]
Napier, Mary E. [1 ]
DeSimone, Joseph M. [1 ,2 ,3 ,4 ,5 ,6 ,7 ]
机构
[1] Univ N Carolina, Dept Chem, Chapel Hill, NC 27599 USA
[2] Univ N Carolina, Lineberger Comprehens Canc Ctr, Chapel Hill, NC 27599 USA
[3] Univ N Carolina, Inst Nanomed, Chapel Hill, NC 27599 USA
[4] Univ N Carolina, Eschelman Sch Pharm, Chapel Hill, NC 27599 USA
[5] Univ N Carolina, Inst Adv Mat, Chapel Hill, NC 27599 USA
[6] N Carolina State Univ, Dept Chem Engn, Raleigh, NC 27695 USA
[7] Mem Sloan Kettering Canc Ctr, Sloan Kettering Inst Canc Res, New York, NY 10065 USA
基金
美国国家卫生研究院;
关键词
Top-down; Trigger-release; Microfluidic; Photolithography; PRINT; DRUG-DELIVERY; POLYMERIC MICROPARTICLES; COPOLYMER MICELLES; FLOW LITHOGRAPHY; SHAPE; MONODISPERSE; FABRICATION; HYDROGELS; NANOPARTICLES; NANOTECHNOLOGY;
D O I
10.1016/j.addr.2012.01.003
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
The ability to engineer particles has the potential to shift the paradigm in the creation of new medicines and diagnostics. Complete control over particle characteristics, such as size, shape, mechanical property, and surface chemistry, can enable rapid translation and facilitate the US Food and Drug Administration (FDA) approval of particle technologies for the treatment of cancer, infectious diseases, diabetes, and a host of other major illnesses. The incorporation of natural and artificial external stimuli to trigger the release of drugs enables exquisite control over the release profiles of drugs in a given environment. In this article, we examine several readily scalable top-down methods for the fabrication of shape-specific particles that utilize stimuli-responsive biomaterials for controlled drug delivery. Special attention is given to Particle Replication In Nonwetting Templates (PRINT (R)) technology and the application of novel triggered-release synthetic and natural polymers. (c) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:1021 / 1030
页数:10
相关论文
共 106 条
  • [1] The hydrogel template method for fabrication of homogeneous nano/microparticles
    Acharya, Ghanashyarn
    Shin, Crystal S.
    McDermott, Matthew
    Mishra, Himanshu
    Park, Haesun
    Kwon, Ick Chan
    Park, Kinam
    [J]. JOURNAL OF CONTROLLED RELEASE, 2010, 141 (03) : 314 - 319
  • [2] Factors affecting the clearance and biodistribution of polymeric nanoparticles
    Alexis, Frank
    Pridgen, Eric
    Molnar, Linda K.
    Farokhzad, Omid C.
    [J]. MOLECULAR PHARMACEUTICS, 2008, 5 (04) : 505 - 515
  • [3] Formation of dispersions using "flow focusing" in microchannels
    Anna, SL
    Bontoux, N
    Stone, HA
    [J]. APPLIED PHYSICS LETTERS, 2003, 82 (03) : 364 - 366
  • [4] Synthesis and characterization of PLGA nanoparticles
    Astete, Carlos E.
    Sabliov, Cristina M.
    [J]. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 2006, 17 (03) : 247 - 289
  • [5] Shape selectivity in the assembly of lithographically designed colloidal particles
    Badaire, Stephane
    Cottin-Bizonne, Cecile
    Woody, Joseph W.
    Yang, Allen
    Stroock, Abraham D.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (01) : 40 - 41
  • [6] Intelligent polymeric micelles from functional poly(ethylene glycol)-poly(amino acid) block copolymers
    Bae, Younsoo
    Kataoka, Kazunori
    [J]. ADVANCED DRUG DELIVERY REVIEWS, 2009, 61 (10) : 768 - 784
  • [7] Liposome application: problems and prospects
    Barenholz, Y
    [J]. CURRENT OPINION IN COLLOID & INTERFACE SCIENCE, 2001, 6 (01) : 66 - 77
  • [8] Barrett A.J., 2003, HDB PROTEOLYTIC ENZY, V2nd
  • [9] Nanoparticle and targeted systems for cancer therapy
    Brannon-Peppas, L
    Blanchette, JO
    [J]. ADVANCED DRUG DELIVERY REVIEWS, 2004, 56 (11) : 1649 - 1659
  • [10] Role of target geometry in phagocytosis
    Champion, JA
    Mitragotri, S
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (13) : 4930 - 4934