Soil and vegetation carbon turnover times from tropical to boreal forests

被引:76
作者
Wang, Jinsong [1 ]
Sun, Jian [1 ]
Xia, Jianyang [2 ]
He, Nianpeng [1 ]
Li, Meiling [1 ]
Niu, Shuli [1 ,3 ]
机构
[1] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Key Lab Ecosyst Network Observat & Modeling, Beijing, Peoples R China
[2] East China Normal Univ, Sch Ecol & Environm Sci, Shanghai, Peoples R China
[3] Univ Chinese Acad Sci, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
carbon turnover time; climate; forest age; forest origin; forest type; soil property; MEAN RESIDENCE TIME; ORGANIC-MATTER; BULK-DENSITY; TEMPERATURE SENSITIVITY; PEDOTRANSFER FUNCTIONS; DECOMPOSITION RATES; AGE-SEQUENCE; RESPIRATION; BIOMASS; STORAGE;
D O I
10.1111/1365-2435.12914
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Terrestrial ecosystems currently function as a net carbon (C) sink for atmospheric C dioxide (CO2), but whether this C sink can persist with global climate change is still uncertain. Such uncertainty largely comes from C turnover time in an ecosystem, which is a critical parameter for modelling C cycle and evaluating C sink potential. Our current understanding of how long C can be stored in soils and vegetation and what controls spatial variations in C turnover time on a large scale is still very limited. We used data on C stocks and C influx from 2,753 plots in vegetation and 1,087 plots in soils and investigated the spatial patterns as well controlling factors of C turnover times across forest ecosystems in eastern China. Our results showed a clear latitudinal pattern of C turnover times, with the shortest turnover times in the low-latitude zones and the longest turnover times in the high-latitude zones. Mean annual temperature and mean annual precipitation were the most important controlling factors on soil C turnover times, while forest age accounted for the majority of variations in the vegetation C turnover times. Forest origin (planted or natural forest) was also responsible for the variations in vegetation C turnover times, while forest type and soil properties were not the dominant controlling factors. Our study highlights the different dominant controlling factors in soil and vegetation C turnover times and different mechanisms underlying above- and below-ground C turnover. These findings are essential to better understand (and reduce uncertainty) in predictive models of coupled C-climate system. A is available for this article.
引用
收藏
页码:71 / 82
页数:12
相关论文
共 85 条
  • [1] EFFECT OF ORGANIC-MATTER ON BULK AND TRUE DENSITIES OF SOME UNCULTIVATED PODZOLIC SOILS
    ADAMS, WA
    [J]. JOURNAL OF SOIL SCIENCE, 1973, 24 (01): : 10 - 17
  • [2] Evaluating the Land and Ocean Components of the Global Carbon Cycle in the CMIP5 Earth System Models
    Anav, A.
    Friedlingstein, P.
    Kidston, M.
    Bopp, L.
    Ciais, P.
    Cox, P.
    Jones, C.
    Jung, M.
    Myneni, R.
    Zhu, Z.
    [J]. JOURNAL OF CLIMATE, 2013, 26 (18) : 6801 - 6843
  • [3] [Anonymous], CHIN SOILS
  • [4] [Anonymous], 2006, Structural equation modeling and natural systems, DOI DOI 10.1017/CBO9780511617799.007
  • [5] [Anonymous], 2016, R LANGUAGE ENV STAT
  • [6] Steady state turnover time of carbon in the Australian terrestrial biosphere
    Barrett, DJ
    [J]. GLOBAL BIOGEOCHEMICAL CYCLES, 2002, 16 (04)
  • [7] A latitudinal gradient in carbon turnover times in forest soils
    Bird, MI
    Chivas, AR
    Head, J
    [J]. NATURE, 1996, 381 (6578) : 143 - 146
  • [8] The decadal state of the terrestrial carbon cycle: Global retrievals of terrestrial carbon allocation, pools, and residence times
    Bloom, A. Anthony
    Exbrayat, Jean-Francois
    van der Velde, Ivar R.
    Feng, Liang
    Williams, Mathew
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (05) : 1285 - 1290
  • [9] Global covariation of carbon turnover times with climate in terrestrial ecosystems
    Carvalhais, Nuno
    Forkel, Matthias
    Khomik, Myroslava
    Bellarby, Jessica
    Jung, Martin
    Migliavacca, Mirco
    Mu, Mingquan
    Saatchi, Sassan
    Santoro, Maurizio
    Thurner, Martin
    Weber, Ulrich
    Ahrens, Bernhard
    Beer, Christian
    Cescatti, Alessandro
    Randerson, James T.
    Reichstein, Markus
    [J]. NATURE, 2014, 514 (7521) : 213 - +
  • [10] Vertical distribution of soil carbon, nitrogen, and phosphorus in typical Chinese terrestrial ecosystems
    Chai Hua
    Yu Guirui
    He Nianpeng
    Wen Ding
    Li Jie
    Fang Jiangping
    [J]. CHINESE GEOGRAPHICAL SCIENCE, 2015, 25 (05) : 549 - 560