GRADED GENERALIZED POLYNOMIAL IDENTITIES (WITH AN ANTIAUTOMORPHISM) IN GRADED ALGEBRAS

被引:0
作者
Wang, Yao [2 ]
Wang, Yu [1 ]
机构
[1] Shanghai Normal Univ, Coll Math & Sci, Shanghai 200234, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Coll Math & Phys, Nanjing, Jiangsu, Peoples R China
关键词
Generalized polynomial identity; Graded algebra; Graded generalized polynomial identity; Prime algebra; Semiprime algebra;
D O I
10.1080/00927872.2011.591864
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a monoid with unity e and cancellation, let F be a commutative ring with 1, and let R = circle plus(g is an element of G) R-g be a G-graded F-semiprime algebra with finite G-grading satisfying a G-graded generalized polynomial identity (with an antiautomorphism when G is commutative) over R-e. If R-e is prime, then R has a strict GPI over R-e.
引用
收藏
页码:3629 / 3635
页数:7
相关论文
共 9 条
[1]   Identities of graded algebras [J].
Bahturin, YA ;
Zaicev, MV .
JOURNAL OF ALGEBRA, 1998, 205 (01) :1-12
[2]  
Beidar K. I., 1996, RINGS GEN IDENTITIES
[3]   When is a graded PI algebra a PI algebra? [J].
Beidar, KI ;
Chebotar, MA .
COMMUNICATIONS IN ALGEBRA, 2003, 31 (06) :2951-2964
[4]   On graded polynomial identities with an antiautomorphism [J].
Beidar, KI ;
Chen, TS ;
Fong, Y ;
Ke, WF .
JOURNAL OF ALGEBRA, 2002, 256 (02) :542-555
[5]   ACTIONS OF COMMUTATIVE HOPF-ALGEBRAS [J].
BERGEN, J ;
COHEN, M .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1986, 18 :159-164
[6]   GROUP-GRADED RINGS, SMASH PRODUCTS, AND GROUP-ACTIONS [J].
COHEN, M ;
MONTGOMERY, S .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 282 (01) :237-258
[7]  
Kelarev Andrei V., 2002, Ring Constructions and Applications. Series in Algebra
[8]   ON SEMIGROUP GRADED PI-ALGEBRAS [J].
KELAREV, AV .
SEMIGROUP FORUM, 1993, 47 (03) :294-298
[9]   Graded identities of group algebras [J].
Sehgal, SK ;
Zaicev, MV .
COMMUNICATIONS IN ALGEBRA, 2002, 30 (01) :489-505