Correlation-induced localization

被引:81
作者
Nosov, P. A. [1 ,2 ,3 ]
Khaymovich, I. M. [3 ]
Kravtsov, V. E. [4 ,5 ,6 ]
机构
[1] St Petersburg State Univ, Dept Phys, St Petersburg 198504, Russia
[2] NRC Kurchatov Inst, Petersburg Nucl Phys Inst, Gatchina 188300, Russia
[3] Max Planck Inst Phys Komplexer Syst, Nothnitzer Str 38, D-01187 Dresden, Germany
[4] Abdus Salam Int Ctr Theoret Phys, Str Costiera 11, I-34151 Trieste, Italy
[5] LD Landau Inst Theoret Phys Chernogolovka, Chernogolovka, Russia
[6] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Kohn Hall, Santa Barbara, CA 93106 USA
基金
美国国家科学基金会; 俄罗斯基础研究基金会;
关键词
VIBRATIONAL-MODES; ANDERSON MODEL; QUANTUM; SYSTEMS; DELOCALIZATION; PROPAGATION; STATISTICS; TRANSITION; DIFFUSION; DYNAMICS;
D O I
10.1103/PhysRevB.99.104203
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A new paradigm of Anderson localization caused by correlations in the long-range hopping along with uncorrelated on-site disorder is considered which requires a more precise formulation of the basic localizationde-localization principles. A new class of random Hamiltonians with translation-invariant hopping integrals is suggested and the localization properties of such models are established both in the coordinate and in the momentum spaces alongside with the corresponding level statistics. Duality of translation-invariant models in the momentum and coordinate space is uncovered and exploited to find a full localization-delocalization phase diagram for such models. The crucial role of the spectral properties of hopping matrix is established and a new matrix inversion trick is suggested to generate a one-parameter family of equivalent localizationde-localization problems. Optimization over the free parameter in such a transformation together with the localization-delocalization principles allows us to establish exact bounds for the localized and ergodic states in long-range hopping models. When applied to the random matrix models with deterministic power-law hopping this transformation allows to confirm localization of states at all values of the exponent in power-law hopping and to prove analytically the symmetry of the exponent in the power-law localized wave functions.
引用
收藏
页数:15
相关论文
共 88 条
[1]   Perturbation theory for the Rosenzweig-Porter matrix model [J].
Altland, A ;
Janssen, M ;
Shapiro, B .
PHYSICAL REVIEW E, 1997, 56 (02) :1471-1475
[2]   Spread of wave packets in disordered hierarchical lattices [J].
Amini, M. .
EPL, 2017, 117 (03)
[3]   ABSENCE OF DIFFUSION IN CERTAIN RANDOM LATTICES [J].
ANDERSON, PW .
PHYSICAL REVIEW, 1958, 109 (05) :1492-1505
[4]  
[Anonymous], 2014, PHYS LONG RANGE INTE, DOI DOI 10.1093/ACPROF:OSO/9780199581931.001.0001
[5]  
[Anonymous], 2015, Hidden correlations in the Hawking radiation and thermal noise
[6]   Distribution of the Ratio of Consecutive Level Spacings in Random Matrix Ensembles [J].
Atas, Y. Y. ;
Bogomolny, E. ;
Giraud, O. ;
Roux, G. .
PHYSICAL REVIEW LETTERS, 2013, 110 (08)
[7]  
AUBRY S, 1980, ANN ISRAEL PHYS SOC, V3, P18
[8]   Phase coherence in tight-binding models with nonrandom long-range hopping [J].
Balagurov, DB ;
Malyshev, VA ;
Adame, FD .
PHYSICAL REVIEW B, 2004, 69 (10)
[9]   Return probability for the Anderson model on the random regular graph [J].
Bera, Soumya ;
De Tomasi, Giuseppe ;
Khaymovich, Ivan M. ;
Scardicchio, Antonello .
PHYSICAL REVIEW B, 2018, 98 (13)
[10]   Delocalized glassy dynamics and many-body localization [J].
Biroli, G. ;
Tarzia, M. .
PHYSICAL REVIEW B, 2017, 96 (20)