Optimization of risk policy and dividends with fixed transaction costs under interest rate

被引:2
作者
Zhang, Xin [1 ,3 ]
Song, Min [2 ]
机构
[1] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
[2] Nankai Univ, Sch Econ, Dept Finance, Tianjin 300071, Peoples R China
[3] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
Mixed classical-impulse control; impulse control; dividends; quasivariational inequality; transaction costs; IMPULSE STOCHASTIC-CONTROL; COMPANY; MODELS;
D O I
10.1007/s11464-012-0219-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the dividend optimization problem for a financial corporation with transaction costs. Besides the dividend control, the financial corporation takes proportional reinsurance to reduce risk and the surplus earns interest at the constant force rho > 0. Because of the presence of fixed transaction costs, the problem becomes a mixed classical-impulse stochastic control problem. We solve this problem explicitly and construct the value function together with the optimal policy.
引用
收藏
页码:795 / 811
页数:17
相关论文
共 24 条
[1]  
Abramowitz M., 1972, Handbook on Mathematical Functions with Formulas, Graphs, and Mathematical Tables
[2]   Controlled diffusion models for optimal dividend pay-out [J].
Asmussen, S ;
Taksar, M .
INSURANCE MATHEMATICS & ECONOMICS, 1997, 20 (01) :1-15
[3]  
Asmussen S.R., 2000, Financ. Stoch, V4, P299, DOI [10.1007/s007800050075, DOI 10.1007/S007800050075]
[4]  
BENSOUSSAN A, 1973, CR ACAD SCI A MATH, V276, P1189
[5]  
Bensoussan A, 1984, Impulse Control and Quasi-Variational Inequalities
[6]   Classical and impulse stochastic control for the optimization of the dividend and risk policies of an insurance firm [J].
Cadenillas, A ;
Choulli, T ;
Taksar, M ;
Zhang, L .
MATHEMATICAL FINANCE, 2006, 16 (01) :181-202
[7]   Consumption-investment problems with transaction costs: Survey and open problems [J].
Cadenillas, A .
MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2000, 51 (01) :43-68
[8]   Classical and impulse stochastic control of the exchange rate using interest rates and reserves [J].
Cadenillas, A ;
Zapatero, F .
MATHEMATICAL FINANCE, 2000, 10 (02) :141-156
[9]   OPTIMAL DIVIDENDS IN AN ORNSTEIN-UHLENBECK TYPE MODEL WITH CREDIT AND DEBIT INTEREST [J].
Cai, Jun ;
Gerber, Hans ;
Yang, Hailiang .
NORTH AMERICAN ACTUARIAL JOURNAL, 2006, 10 (02) :94-108
[10]   A diffusion model for optimal dividend distribution for a company with constraints on risk control [J].
Choulli, T ;
Taksar, M ;
Zhou, XY .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2003, 41 (06) :1946-1979