A stabilized sequential quadratic semidefinite programming method for degenerate nonlinear semidefinite programs

被引:10
作者
Yamakawa, Yuya [1 ]
Okuno, Takayuki [2 ,3 ]
机构
[1] Kyoto Univ, Grad Sch Informat, Dept Appl Math & Phys, Sakyo Ku, Yoshida Honmachi, Kyoto 6068501, Japan
[2] Seikei Univ, Fac Sci & Technol, Kichijouji 1-3-1, Musashino, Tokyo 1808633, Japan
[3] RIKEN, Ctr Adv Intelligence Project, Chuo Ku, Nihonbashi 1 Chome Mitsui Bldg,15th Floor, Tokyo 1030027, Japan
基金
日本学术振兴会;
关键词
Nonlinear semidefinite program; Stabilized sequential quadratic semidefinite programming method; Sequential optimality conditions; Global convergence; AUGMENTED LAGRANGIAN FUNCTIONS; SQP METHOD; CONVERGENCE; ALGORITHM;
D O I
10.1007/s10589-022-00402-x
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we propose a new sequential quadratic semidefinite programming (SQSDP) method for solving degenerate nonlinear semidefinite programs (NSDPs), in which we produce iteration points by solving a sequence of stabilized quadratic semidefinite programming (QSDP) subproblems, which we derive from the minimax problem associated with the NSDP. Unlike the existing SQSDP methods, the proposed one allows us to solve those QSDP subproblems inexactly, and each QSDP is feasible. One more remarkable point of the proposed method is that constraint qualifications or boundedness of Lagrange multiplier sequences are not required in the global convergence analysis. Specifically, without assuming such conditions, we prove the global convergence to a point satisfying any of the following: the stationary conditions for the feasibility problem, the approximate-Karush-Kuhn-Tucker (AKKT) conditions, and the trace-AKKT conditions. Finally, we conduct some numerical experiments to examine the efficiency of the proposed method.
引用
收藏
页码:1027 / 1064
页数:38
相关论文
共 40 条
[1]  
Andreani R., 2019, Optimization online
[2]  
Andreani R., 2020, OPTIMALITY CONDITION
[3]   Optimality conditions and global convergence for nonlinear semidefinite programming [J].
Andreani, Roberto ;
Haeser, Gabriel ;
Viana, Daiana S. .
MATHEMATICAL PROGRAMMING, 2020, 180 (1-2) :203-235
[4]  
Boggs P.T., 1995, Acta numerica, V4, P1, DOI [10.1017/s0962492900002518, DOI 10.1017/S0962492900002518]
[5]   A global algorithm for nonlinear semidefinite programming [J].
Correa, R ;
Ramirez, HC .
SIAM JOURNAL ON OPTIMIZATION, 2004, 15 (01) :303-318
[6]   Robust control via sequential semidefinite programming [J].
Fares, B ;
Noll, D ;
Apkarian, P .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2002, 40 (06) :1791-1820
[7]   Nonlinear semidefinite programming: sensitivity, convergence, and an application in passive reduced-order modeling [J].
Freund, Roland W. ;
Jarre, Florian ;
Vogelbusch, Christoph H. .
MATHEMATICAL PROGRAMMING, 2007, 109 (2-3) :581-611
[8]   Exact augmented Lagrangian functions for nonlinear semidefinite programming [J].
Fukuda, Ellen H. ;
Lourenco, Bruno F. .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2018, 71 (02) :457-482
[9]   A stabilized SQP method: superlinear convergence [J].
Gill, Philip E. ;
Kungurtsev, Vyacheslav ;
Robinson, Daniel P. .
MATHEMATICAL PROGRAMMING, 2017, 163 (1-2) :369-410
[10]   A stabilized SQP method: global convergence [J].
Gill, Philip E. ;
Kungurtsev, Vyacheslav ;
Robinson, Daniel P. .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2017, 37 (01) :407-443