Effect of magnetic field on Cu-water nanofluid heat transfer using GMDH-type neural network

被引:108
作者
Sheikholeslami, M. [1 ]
Sheykholeslami, F. Bani [2 ]
Khoshhal, S. [2 ]
Mola-Abasia, H. [3 ]
Ganji, D. D. [1 ]
Rokni, Houman B. [1 ,4 ]
机构
[1] Babol Univ Technol, Dept Mech Engn, Babol Sar, Iran
[2] Babol Univ Technol, Dept Chem Engn, Babol Sar, Iran
[3] Babol Univ Technol, Dept Civil Engn, Babol Sar, Iran
[4] Univ Denver, Denver, CO 80208 USA
关键词
GMDH; Magnetohydrodynamic; Stretching cylinder; Nanofluid; Heat transfer; NATURAL-CONVECTION; FLOW; ENCLOSURE; DECOMPOSITION; PREDICTION; CYLINDER; DESIGN;
D O I
10.1007/s00521-013-1459-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Heat transfer of Cu-water nanofluid over a stretching cylinder in the presence of magnetic field has been investigated. The group method of data handling (GMDH) type neural networks (NNs) is used to calculate Nusselt number formulation. Results indicate that GMDH-type NN in comparison with fourth-order Runge-Kutta integration scheme provides an effective means of efficiently recognizing the patterns in data and accurately predicting a performance. The effects of nanoparticle volume fraction, magnetic parameter and Reynolds number on Nusselt number are studied by sensitivity analyses. The results show that Nusselt number is an increasing function of Reynolds number and volume fraction of nanoparticles while it is a decreasing function of magnetic parameter. As volume fraction of nanoparticles increases, the effect of this parameter on Nusselt number also increases, but opposite behavior is obtained for magnetic parameter and Reynolds number.
引用
收藏
页码:171 / 178
页数:8
相关论文
共 20 条
[1]   Investigation of undertow in reflective beaches using a GMDH-type neural network [J].
Abedimahzoon N. ;
Molaabasi H. ;
Lashtehneshaei M. ;
Biklaryan M. .
Turkish Journal of Engineering and Environmental Sciences, 2010, 34 (03) :201-213
[2]   Nanofluid flow and heat transfer due to a stretching cylinder in the presence of magnetic field [J].
Ashorynejad, H. R. ;
Sheikholeslami, M. ;
Pop, I. ;
Ganji, D. D. .
HEAT AND MASS TRANSFER, 2013, 49 (03) :427-436
[3]   Magnetic field effects on natural convection flow of a nanofluid in a horizontal cylindrical annulus using Lattice Boltzmann method [J].
Ashorynejad, Hamid Reza ;
Mohamad, Abdulmajeed A. ;
Sheikholeslami, Mohsen .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2013, 64 :240-250
[4]  
Farlow S.J., 1984, SELF ORG METHOD MODE
[5]   Natural Convection Heat Transfer in an Inclined Enclosure Filled with a Water-Cuo Nanofluid [J].
Ghasemi, B. ;
Aminossadati, S. M. .
NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 2009, 55 (08) :807-823
[6]   POLYNOMIAL THEORY OF COMPLEX SYSTEMS [J].
IVAKHNENKO, AG .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1971, SMC1 (04) :364-+
[7]   Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids [J].
Khanafer, K ;
Vafai, K ;
Lightstone, M .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2003, 46 (19) :3639-3653
[8]   INTEGRATION OF MAGNETOHYDRODYNAMIC BOUNDARY-LAYER EQUATIONS BY MEKSYNS METHOD [J].
LIRON, N ;
WILHELM, HE .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1974, 54 (01) :27-37
[9]   Shear Wave Velocity by Polynomial Neural Networks and Genetic Algorithms Based on Geotechnical Soil Properties [J].
Mola-Abasi, H. ;
Eslami, A. ;
Shourijeh, P. Tabatabaie .
ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2013, 38 (04) :829-838
[10]   Evolutionary design of generalized polynomial neural networks for modelling and prediction of explosive forming process [J].
Nariman-Zadeh, N ;
Darvizeh, A ;
Jamali, A ;
Moeini, A .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2005, 164 :1561-1571