Variable fractional-delay (VFD);
Variable frequency response (VFR);
Second-order-cone (SOC) constraint;
Bi-equiripple;
LEAST-SQUARES METHOD;
DIGITAL-FILTERS;
FIR FILTERS;
DESIGN;
D O I:
10.1016/j.sigpro.2013.07.004
中图分类号:
TM [电工技术];
TN [电子技术、通信技术];
学科分类号:
0808 ;
0809 ;
摘要:
This paper presents a bi-minimax method for designing an odd-order variable fractional-delay (VFD) finite-impulse-response (FIR) digital filter such that both the peak errors of its variable frequency response (VFR) and VFD response can be simultaneously suppressed. The bi-minimax design iteratively minimizes a mixed error function involving both the VFR-peak-error and VFD-peak-error subject to the second-order-cone (SOC) constraints on the VFR errors and linear-programming (LP) constraints on the VFD errors. As compared with the existing SOC-based minimax design that minimizes the VFR-peak-error only, this odd-order bi-minimax design suppresses the VFD-peak-error and flattens both the VFR errors and VFD errors simultaneously. Consequently, both the two errors are made nearly equi-ripple (bi-equiripple). An example is given for showing the simultaneous suppression of the two kinds of peak errors and verifying the effectiveness of the odd-order bi-minimax design approach. (C) 2013 Elsevier B.V. An rights reserved.