The cell cycle as a therapeutic target for Alzheimer's disease

被引:83
作者
Neve, Rachael L.
McPhie, Donna L.
机构
[1] Harvard Univ, Sch Med, Dept Psychiat, Belmont, MA 02478 USA
[2] McLean Hosp, Belmont, MA 02478 USA
关键词
Alzheimer's disease; amyloid precursor protein; cell cycle; apoptosis; cyclin-dependent kinase; therapeutic;
D O I
10.1016/j.pharmthera.2005.09.005
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease worldwide. It is a progressive, incurable disease whose predominant clinical manifestation is memory loss, and which always ends in death. The classic neuropathological diagnostic markers for AD are amyloid plaques and neurofibrillary tangles, but our understanding of the role that these features of AD play in the etiology and progression of the disease remains incomplete. Research over the last decade has revealed that cell cycle abnormalities also represent a major neuropathological feature of AD. These abnormalities appear very early in the disease process, prior to the appearance of plaques and tangles. Growing evidence suggests that neuronal cell cycle regulatory failure, leading to apoptosis, may be a significant component of the pathogenesis of AD. A number of signaling pathways with the potential to activate aberrant cell cycle re-entry in AD have been described. The relationships among these signaling cascades, which involve the amyloid precursor protein (APP), cyclin-dependent kinases (cdks), and the cell cycle protein Pin1, have not yet been fully elucidated, but details of the individual pathways are beginning to emerge. This review summarizes the current state of knowledge with respect to specific neuronal signaling events that are thought to underlie cell cycle regulatory failure in AD brain. The elements of these pathways that represent potential new therapeutic targets for AD are described. Drugs and peptides that can inhibit molecular steps leading to AD neurodegeneration by intervening in the activation of cell cycle re-entry in neurons represent an entirely new approach to the development of treatments for AD. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:99 / 113
页数:15
相关论文
共 183 条
[1]   Hyperphosphorylated tan and neurofilament and cytoskeletal disruptions in mice overexpressing human p25, an activator of cdk5 [J].
Ahlijanian, MK ;
Barrezueta, NX ;
Williams, RD ;
Jakowski, A ;
Kowsz, KP ;
McCarthy, S ;
Coskran, T ;
Carlo, A ;
Seymour, PA ;
Burkhardt, JE ;
Nelson, RB ;
McNeish, JD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (06) :2910-2915
[2]   Effects of rofecoxib or naproxen vs placebo on Alzheimer disease progression - A randomized controlled trial [J].
Aisen, PS ;
Schafer, KA ;
Grundman, M ;
Pfeiffer, E ;
Sano, M ;
Davis, KL ;
Farlow, MR ;
Jin, S ;
Thomas, RG ;
Thal, LJ .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2003, 289 (21) :2819-2826
[3]   PAK3 mutation in nonsyndromic X-linked mental retardation [J].
Allen, KM ;
Gleeson, JG ;
Bagrodia, S ;
Partington, MW ;
MacMillan, JC ;
Cerione, RA ;
Mulley, JC ;
Walsh, CA .
NATURE GENETICS, 1998, 20 (01) :25-30
[4]   Inhibition of tau phosphorylating protein kinase cdk5 prevents β-amyloid-induced neuronal death [J].
Alvarez, A ;
Toro, R ;
Cáceres, A ;
Maccioni, RB .
FEBS LETTERS, 1999, 459 (03) :421-426
[5]   A cdk5-p35 stable complex is involved in the β-amyloid-induced deregulation of cdk5 activity in hippocampal neurons [J].
Alvarez, A ;
Muñoz, JP ;
Maccioni, RB .
EXPERIMENTAL CELL RESEARCH, 2001, 264 (02) :266-274
[6]   JAMM: A metalloprotease-like zinc site in the proteasome and signalosome [J].
Ambroggio, XI ;
Rees, DC ;
Deshaies, RJ .
PLOS BIOLOGY, 2004, 2 (01) :113-119
[7]  
Arendt T, 1996, NEUROREPORT, V7, P3047
[8]   Colocalization and fluorescence resonance energy transfer between cdk5 and AT8 suggests a close association in pre-neurofibrillary tangles and neurofibrillary tangles [J].
Augustinack, JC ;
Sanders, JL ;
Tsai, LH ;
Hyman, BT .
JOURNAL OF NEUROPATHOLOGY AND EXPERIMENTAL NEUROLOGY, 2002, 61 (06) :557-564
[9]   The critical features and the mechanism of inhibition of a kinase interaction motif-based peptide inhibitor of JNK [J].
Barr, RK ;
Boehm, I ;
Attwood, PV ;
Watt, PM ;
Bogoyevitch, MA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (35) :36327-36338
[10]   Identification of the critical features of a small peptide inhibitor of JNK activity [J].
Barr, RK ;
Kendrick, TS ;
Bogoyevitch, MA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (13) :10987-10997