GCAN: Graph-aware Co-Attention Networks for Explainable Fake News Detection on Social Media

被引:0
|
作者
Lu, Yi-Ju [1 ]
Li, Cheng-Te [2 ]
机构
[1] Natl Cheng Kung Univ, Dept Stat, Tainan, Taiwan
[2] Natl Cheng Kung Univ, Inst Data Sci, Tainan, Taiwan
来源
58TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2020) | 2020年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper solves the fake news detection problem under a more realistic scenario on social media. Given the source short-text tweet and the corresponding sequence of retweet users without text comments, we aim at predicting whether the source tweet is fake or not, and generating explanation by highlighting the evidences on suspicious retweeters and the words they concern. We develop a novel neural network-based model, Graph-aware Co-Attention Networks (GCAN), to achieve the goal. Extensive experiments conducted on real tweet datasets exhibit that GCAN can significantly outperform state-of-the-art methods by 16% in accuracy on average. In addition, the case studies also show that GCAN can produce reasonable explanations.
引用
收藏
页码:505 / 514
页数:10
相关论文
共 50 条
  • [31] Graph-Aware Deep Fusion Networks for Online Spam Review Detection
    He, Li
    Xu, Guandong
    Jameel, Shoaib
    Wang, Xianzhi
    Chen, Hongxu
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2023, 10 (05) : 2557 - 2565
  • [32] Adversarial Contrastive Learning for Evidence-Aware Fake News Detection With Graph Neural Networks
    Wu, Junfei
    Xu, Weizhi
    Liu, Qiang
    Wu, Shu
    Wang, Liang
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (11) : 5591 - 5604
  • [33] Multi-view co-attention network for fake news detection by modeling topic-specific user and news source credibility
    Bazmi, Parisa
    Asadpour, Masoud
    Shakery, Azadeh
    INFORMATION PROCESSING & MANAGEMENT, 2023, 60 (01)
  • [34] Social Media Rumour Detection Through Graph Attention Networks
    Zhang, Xinpeng
    Gong, Shuzhi
    Sinnott, Richard O.
    2021 IEEE ASIA-PACIFIC CONFERENCE ON COMPUTER SCIENCE AND DATA ENGINEERING (CSDE), 2021,
  • [35] Fake News Detection on Social Networks: A Survey
    Shen, Yanping
    Liu, Qingjie
    Guo, Na
    Yuan, Jing
    Yang, Yanqing
    APPLIED SCIENCES-BASEL, 2023, 13 (21):
  • [36] ?Fake News? in Social Networks: Media Practices of Students
    Barinov, Dmitry N.
    Nesina, Victoria V.
    THEORETICAL AND PRACTICAL ISSUES OF JOURNALISM, 2023, 12 (01): : 5 - 23
  • [37] Topic-Aware Fake News Detection Based on Heterogeneous Graph
    Sun, Lijuan
    Wang, Hongbin
    IEEE ACCESS, 2023, 11 : 103743 - 103752
  • [38] Attention-Based Deep Learning Models for Detection of Fake News in Social Networks
    Ramya S.P.
    Eswari R.
    International Journal of Cognitive Informatics and Natural Intelligence, 2021, 15 (04)
  • [39] Multimodal Relationship-aware Attention Network for Fake News Detection
    Yang, Hongyu
    Zhang, Jinjiao
    Hu, Ze
    Zhang, Liang
    Cheng, Xiang
    2023 INTERNATIONAL CONFERENCE ON DATA SECURITY AND PRIVACY PROTECTION, DSPP, 2023, : 143 - 149
  • [40] KAN: Knowledge-aware Attention Network for Fake News Detection
    Dun, Yaqian
    Tu, Kefei
    Chen, Chen
    Hou, Chunyan
    Yuan, Xiaojie
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 81 - 89