MULTILINEAR EXPONENTIAL SUMS IN PRIME FIELDS UNDER OPTIMAL ENTROPY CONDITION ON THE SOURCES

被引:61
作者
Bourgain, Jean [1 ]
机构
[1] Inst Adv Study, Sch Math, Princeton, NJ 08540 USA
关键词
Prime field; exponential sum;
D O I
10.1007/s00039-008-0691-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main result of this paper is an exponential sum bound in prime fields for multilinear expressions of the type Sigma x(1)epsilon A(1),...,x(r)epsilon A(r) e(p)(x(1),...x(r)) under nearly optimal conditions on vertical bar A(1)vertical bar center dot center dot center dot vertical bar A(r)vertical bar. It provides the expected generalization of the well-known inequality for r = 2. We also establish a new result on Gauss sums for multiplicative subgroups H of F-p(*), obtaining a nontrivial estimate provided log vertical bar H vertical bar > Clog p/log log p. This is a further improvement on [BGK].
引用
收藏
页码:1477 / 1502
页数:26
相关论文
共 7 条
[1]  
BARAK B, 2005, P 37 ANN ACM S THEOR, P00001
[2]   Estimates for the number of sums and products and for exponential sums in fields of prime order [J].
Bourgain, J. ;
Glibichuk, A. A. ;
Konyagin, S. V. .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2006, 73 :380-398
[3]   PLoS computational biology:: A new community journal [J].
Bourne, PE ;
Brenner, SE ;
Eisen, MB .
PLOS COMPUTATIONAL BIOLOGY, 2005, 1 (01) :1-1
[4]  
GLIBICHUK A, CRM P IN PRESS
[5]   GENERALIZED ARITHMETICAL PROGRESSIONS AND SUMSETS [J].
RUZSA, IZ .
ACTA MATHEMATICA HUNGARICA, 1994, 65 (04) :379-388
[6]   On a question of Erdos and Moser [J].
Sudakov, B ;
Szemerédi, E ;
Vu, VH .
DUKE MATHEMATICAL JOURNAL, 2005, 129 (01) :129-155
[7]  
Tao VT, 2006, CAM ST AD M, V105, P1, DOI 10.1017/CBO9780511755149