Physiological responses of wheat to drought stress and its mitigation approaches

被引:113
|
作者
Ahmad, Zahoor [1 ,4 ]
Waraich, Ejaz Ahmad [2 ]
Akhtar, Sajjad [3 ]
Anjum, Shazia [4 ]
Ahmad, Tanveer [5 ]
Mahboob, Wajid [6 ]
Hafeez, Osama Bin Abdul [7 ]
Tapera, Terence [3 ]
Labuschagne, Maryke [3 ]
Rizwan, Muhammad [6 ]
机构
[1] Islamia Univ Bahawalpur, Dept Life Sci Bot, Bahawalpur, Pakistan
[2] Univ Agr Faisalabad, Dept Agron, Faisalabad, Pakistan
[3] Univ Free State, Dept Plant Sci Plant Breeding, Bloemfontein, South Africa
[4] Islamia Univ Bahawalpur, Cholistan Inst Desert Studies, Bahawalpur, Pakistan
[5] Ghazi Univ, Dept Hort, Dg Khan, Pakistan
[6] Nucl Inst Agr, Tandojam, Sindh, Pakistan
[7] Univ Agr Faisalabad, Dept Hort, Subcampus Burewala, Faisalabad, Pakistan
关键词
Aerial phenotyping; Priming; Root-leaf relations; Water budgeting; Resource allocation; Osmolyte accumulation; Chlorophyll; Photosynthesis; TRITICUM-AESTIVUM L; WATER-USE EFFICIENCY; QUANTITATIVE TRAIT LOCI; ROOT-SYSTEM ARCHITECTURE; ASCORBIC-ACID; EXOGENOUS APPLICATION; DEFICIT STRESS; PLANT-GROWTH; PROTEOLYTIC ACTIVITY; CHLOROPHYLL CONTENT;
D O I
10.1007/s11738-018-2651-6
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Drought is a polygenically controlled stress and a major agricultural risk that reduces crop productivity and limits the successful insight of land potential throughout the world. This review article has been divided into two parts, i.e., effect of drought stress on physiology of wheat and potential drought mitigation approaches. In the first part, physiological responses of wheat to stress were discussed. Cell membrane stability, relative water content, early maturity, decreased leaf area, small plant size, increased dry weight and root-shoot ratio, and the whole-plant transpiration rate response to enhanced atmospheric vapor pressure deficit are physiological traits associated with drought tolerance in wheat. Reduction of relative water content closes stomata and thereby reduces stomatal conductance. Osmotic adjustment improves drought tolerance by allowing cell enlargement, plant growth, and stomata to stay partially open and by maintaining CO2 fixation under severe water deficit. The wheat plant accumulates several organic and inorganic solutes in its cytosol to lessen its osmotic potential for maintenance of cell turgor. Drought affects photosynthesis negatively by changing the inner structure of chloroplasts, mitochondria, and chlorophyll content and minerals. Destruction of the photosystem II (PSII) oxygen releasing complex and reaction center can disturb production and use of electrons, causing lipid peroxidation of cell membrane through the production of reactive oxygen species. In the second part, drought mitigation approaches were discussed. Seed, drought, bacterial, and hormonal priming are common approaches used to lessen the effects of water deficit. Physiological trait-based breeding, molecular breeding, marker-assisted backcrossing, aerial phenotyping, water budgeting, and resource allocation are modern approaches used to develop drought tolerant wheat cultivars. Wheat genotypes produced as a result of a combination of all these methodologies will increase food security regarding the currently changing climate.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Physiological responses of wheat to drought stress and its mitigation approaches
    Zahoor Ahmad
    Ejaz Ahmad Waraich
    Sajjad Akhtar
    Shazia Anjum
    Tanveer Ahmad
    Wajid Mahboob
    Osama Bin Abdul Hafeez
    Terence Tapera
    Maryke Labuschagne
    Muhammad Rizwan
    Acta Physiologiae Plantarum, 2018, 40
  • [2] Physiological and biochemical responses of hexaploid and tetraploid wheat to drought stress
    Chandrasekar, V
    Sairam, RK
    Srivastava, GC
    JOURNAL OF AGRONOMY AND CROP SCIENCE-ZEITSCHRIFT FUR ACKER UND PFLANZENBAU, 2000, 185 (04): : 219 - 227
  • [3] Physiological responses to drought stress in wild relatives of wheat: implications for wheat improvement
    Pour-Aboughadareh, Alireza
    Ahmadi, Jafar
    Mehrabi, Ali Ashraf
    Etminan, Alireza
    Moghaddam, Mohammad
    Siddique, Kadambot H. M.
    ACTA PHYSIOLOGIAE PLANTARUM, 2017, 39 (04)
  • [4] Mitigation of drought stress in maize and sorghum by humic acid: differential growth and physiological responses
    Abu-Ria, Mohamed E.
    Elghareeb, Eman M.
    Shukry, Wafaa M.
    Abo-Hamed, Samy A.
    Ibraheem, Farag
    BMC PLANT BIOLOGY, 2024, 24 (01):
  • [5] Comparative Physiological, Biochemical, and Leaf Proteome Responses of Contrasting Wheat Varieties to Drought Stress
    Moloi, Sellwane J.
    Alqarni, Ali O.
    Brown, Adrian P.
    Goche, Tatenda
    Shargie, Nemera G.
    Moloi, Makoena J.
    Gokul, Arun
    Chivasa, Stephen
    Ngara, Rudo
    PLANTS-BASEL, 2024, 13 (19):
  • [6] Physiological Responses of Almond Genotypes to Drought Stress
    S. Gohari
    A. Imani
    A. R. Talaei
    V. Abdossi
    M. R. Asghari
    Russian Journal of Plant Physiology, 2023, 70
  • [7] Physiological Responses of Almond Genotypes to Drought Stress
    Gohari, S.
    Imani, A.
    Talaei, A. R.
    Abdossi, V.
    Asghari, M. R.
    RUSSIAN JOURNAL OF PLANT PHYSIOLOGY, 2023, 70 (06)
  • [8] PHYSIOLOGICAL AND BIOCHEMICAL RESPONSES OF WHEAT SPECIES WITH DIFFERENT PLOIDY LEVEL UNDER DROUGHT STRESS
    Baloglu, Mehmet Cengiz
    Cetin, Fadime
    FRESENIUS ENVIRONMENTAL BULLETIN, 2020, 29 (12): : 10536 - 10545
  • [9] Physiological Responses and Yield of Wheat Plants in Zinc-Mediated Alleviation of Drought Stress
    Ma, Dongyun
    Sun, Dexiang
    Wang, Chenyang
    Ding, Huina
    Qin, Haixia
    Hou, Junfeng
    Huang, Xin
    Xie, Yingxin
    Guo, Tiancai
    FRONTIERS IN PLANT SCIENCE, 2017, 8
  • [10] Physiological responses to water stress and yield of winter wheat cultivars differing in drought tolerance
    Thapa, S.
    Reddy, S. K.
    Fuentealba, M. P.
    Xue, Q.
    Rudd, J. C.
    Jessup, K. E.
    Devkota, R. N.
    Liu, S.
    JOURNAL OF AGRONOMY AND CROP SCIENCE, 2018, 204 (04) : 347 - 358