Hyperspectral Remote Sensing Data Analysis and Future Challenges

被引:1637
作者
Bioucas-Dias, Jose M. [1 ]
Plaza, Antonio [2 ]
Camps-Valls, Gustavo [3 ]
Scheunders, Paul [4 ]
Nasrabadi, Nasser M. [5 ]
Chanussot, Jocelyn [6 ]
机构
[1] Inst Super Tecn, Inst Telecomunicacoes, P-10491 Lisbon, Portugal
[2] Univ Extremadura, Escuela Politecn Caceres, Dept Technol Comp & Commun, Hyperspectral Comp Lab, Caceres 10003, Spain
[3] Univ Valencia, Image Proc Lab, E-46980 Paterna, Valencia, Spain
[4] Univ Antwerp, Vis Lab, Dept Phys, iMinds, B-2610 Antwerp, Belgium
[5] US Army Res Lab, Adelphi, MD 20783 USA
[6] Grenoble Inst Technol, GIPSA Lab, Grenoble, France
关键词
MULTINOMIAL LOGISTIC-REGRESSION; NEURAL-NETWORK ESTIMATION; LEAF-AREA INDEX; ANOMALY DETECTION; IMAGE CLASSIFICATION; ENDMEMBER EXTRACTION; SPATIAL-RESOLUTION; MULTISPECTRAL DATA; COMPONENT ANALYSIS; TARGET DETECTION;
D O I
10.1109/MGRS.2013.2244672
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Hyperspectral remote sensing technology has advanced significantly in the past two decades. Current sensors onboard airborne and spaceborne platforms cover large areas of the Earth surface with unprecedented spectral, spatial, and temporal resolutions. These characteristics enable a myriad of applications requiring fine identification of materials or estimation of physical parameters. Very often, these applications rely on sophisticated and complex data analysis methods. The sources of difficulties are, namely, the high dimensionality and size of the hyperspectral data, the spectral mixing (linear and nonlinear), and the degradation mechanisms associated to the measurement process such as noise and atmospheric effects. This paper presents a tutorial/overview cross section of some relevant hyperspectral data analysis methods and algorithms, organized in six main topics: data fusion, unmixing, classification, target detection, physical parameter retrieval, and fast computing. In all topics, we describe the state-of-the-art, provide illustrative examples, and point to future challenges and research directions.
引用
收藏
页码:6 / 36
页数:31
相关论文
共 186 条
  • [51] MINIMUM-VOLUME TRANSFORMS FOR REMOTELY-SENSED DATA
    CRAIG, MD
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1994, 32 (03): : 542 - 552
  • [52] Extended profiles with morphological attribute filters for the analysis of hyperspectral data
    Dalla Mura, Mauro
    Benediktsson, Jon Atli
    Waske, Bjoern
    Bruzzone, Lorenzo
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2010, 31 (22) : 5975 - 5991
  • [53] Morphological Attribute Profiles for the Analysis of Very High Resolution Images
    Dalla Mura, Mauro
    Benediktsson, Jon Atli
    Waske, Bjoern
    Bruzzone, Lorenzo
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2010, 48 (10): : 3747 - 3762
  • [54] Active Learning via Multi-View and Local Proximity Co-Regularization for Hyperspectral Image Classification
    Di, Wei
    Crawford, Melba M.
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2011, 5 (03) : 618 - 628
  • [55] Dias JM, 2010, INVESTIGACAO, P1, DOI 10.14195/978-989-26-0193-9
  • [56] Bayesian separation of spectral sources under non-negativity and full additivity constraints
    Dobigeon, Nicolas
    Moussaoui, Said
    Tourneret, Jean-Yves
    Carteret, Cedric
    [J]. SIGNAL PROCESSING, 2009, 89 (12) : 2657 - 2669
  • [57] Dopido I., IEEE T GEOS IN PRESS
  • [58] Fast real-time onboard processing of hyperspectral imagery for detection and classification
    Du, Qian
    Nekovei, Reza
    [J]. JOURNAL OF REAL-TIME IMAGE PROCESSING, 2009, 4 (03) : 273 - 286
  • [59] Support vector machines regression for retrieval of leaf area index from multiangle imaging spectroradiometer
    Durbha, Surya S.
    King, Roger L.
    Younan, Nicolas H.
    [J]. REMOTE SENSING OF ENVIRONMENT, 2007, 107 (1-2) : 348 - 361
  • [60] Hyperspectral change detection in the presence of diurnal and seasonal variations
    Eismann, Michael T.
    Meola, Joseph
    Hardie, Russell C.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (01): : 237 - 249