Hyperspectral Remote Sensing Data Analysis and Future Challenges

被引:1637
作者
Bioucas-Dias, Jose M. [1 ]
Plaza, Antonio [2 ]
Camps-Valls, Gustavo [3 ]
Scheunders, Paul [4 ]
Nasrabadi, Nasser M. [5 ]
Chanussot, Jocelyn [6 ]
机构
[1] Inst Super Tecn, Inst Telecomunicacoes, P-10491 Lisbon, Portugal
[2] Univ Extremadura, Escuela Politecn Caceres, Dept Technol Comp & Commun, Hyperspectral Comp Lab, Caceres 10003, Spain
[3] Univ Valencia, Image Proc Lab, E-46980 Paterna, Valencia, Spain
[4] Univ Antwerp, Vis Lab, Dept Phys, iMinds, B-2610 Antwerp, Belgium
[5] US Army Res Lab, Adelphi, MD 20783 USA
[6] Grenoble Inst Technol, GIPSA Lab, Grenoble, France
关键词
MULTINOMIAL LOGISTIC-REGRESSION; NEURAL-NETWORK ESTIMATION; LEAF-AREA INDEX; ANOMALY DETECTION; IMAGE CLASSIFICATION; ENDMEMBER EXTRACTION; SPATIAL-RESOLUTION; MULTISPECTRAL DATA; COMPONENT ANALYSIS; TARGET DETECTION;
D O I
10.1109/MGRS.2013.2244672
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Hyperspectral remote sensing technology has advanced significantly in the past two decades. Current sensors onboard airborne and spaceborne platforms cover large areas of the Earth surface with unprecedented spectral, spatial, and temporal resolutions. These characteristics enable a myriad of applications requiring fine identification of materials or estimation of physical parameters. Very often, these applications rely on sophisticated and complex data analysis methods. The sources of difficulties are, namely, the high dimensionality and size of the hyperspectral data, the spectral mixing (linear and nonlinear), and the degradation mechanisms associated to the measurement process such as noise and atmospheric effects. This paper presents a tutorial/overview cross section of some relevant hyperspectral data analysis methods and algorithms, organized in six main topics: data fusion, unmixing, classification, target detection, physical parameter retrieval, and fast computing. In all topics, we describe the state-of-the-art, provide illustrative examples, and point to future challenges and research directions.
引用
收藏
页码:6 / 36
页数:31
相关论文
共 186 条
  • [1] A Plaza QD, 2011, INT J HIGH PERFORM C, V4, P528
  • [2] Super-resolution reconstruction of hyperspectral images
    Akgun, T
    Altunbasak, Y
    Mersereau, RM
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2005, 14 (11) : 1860 - 1875
  • [3] Comparison of pansharpening algorithms: Outcome of the 2006 GRS-S data-fusion contest
    Alparone, Luciano
    Wald, Lucien
    Chanussot, Jocelyn
    Thomas, Claire
    Gamba, Paolo
    Bruce, Lori Mann
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2007, 45 (10): : 3012 - 3021
  • [4] Supervised Nonlinear Spectral Unmixing Using a Postnonlinear Mixing Model for Hyperspectral Imagery
    Altmann, Yoann
    Halimi, Abderrahim
    Dobigeon, Nicolas
    Tourneret, Jean-Yves
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2012, 21 (06) : 3017 - 3025
  • [5] [Anonymous], 2009, Kernel methods for remote sensing data analysis
  • [6] [Anonymous], 2007, Hyperspectral data exploitation: theory and applications
  • [7] [Anonymous], 2012, ARXIV12081237
  • [8] Efficient Kernel Orthonormalized PLS for Remote Sensing Applications
    Arenas-Garcia, Jeronimo
    Camps-Valls, Gustavo
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (10): : 2872 - 2881
  • [9] Detection of subpixel anomalies in multispectral infrared imagery using an adaptive Bayesian classifier
    Ashton, EA
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1998, 36 (02): : 506 - 517
  • [10] Neural network estimation of LAI, fAPAR, fCover and LAIxCab, from top of canopy MERIS reflectance data:: Principles and validation
    Bacour, C.
    Baret, F.
    Beal, D.
    Weiss, M.
    Pavageau, K.
    [J]. REMOTE SENSING OF ENVIRONMENT, 2006, 105 (04) : 313 - 325