UNIFORMLY BOUNDED COMPOSITION OPERATORS ON A BANACH SPACE OF BOUNDED WIENER-YOUNG VARIATION FUNCTIONS

被引:0
作者
Glazowska, Dorota [1 ]
Atilio Guerrero, Jog [2 ]
Matkowski, Janusz [3 ]
Merentes, Nelson [4 ]
机构
[1] Univ Zielona Gora, Fac Math Comp Sci & Econometr, Zielona Gora, Poland
[2] Univ Nacl Expt Tachira, Dept Matemat & Fis, San Cristobal, Venezuela
[3] Univ Zielona Gora, Inst Math, Zielona Gora, Poland
[4] Cent Univ Venezuela, Escuela Matemat, Caracas, Venezuela
关键词
phi-variation in the sense of Wiener; uniformly bounded operator; regularization; composition operator; Jensen equation;
D O I
10.4134/BKMS.2013.50.2.675
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove, under some general assumptions, that a generator of any uniformly bounded Nemytskij operator, mapping a subset of space of-functions of bounded variation in the sense of Wiener-Young into another space of this type, must be an affine function with respect to the second variable.
引用
收藏
页码:675 / 685
页数:11
相关论文
共 50 条
[41]   Topological structure in the space of (weighted) composition operators on weighted Banach spaces of holomorphic functions [J].
Abanin, Alexander, V ;
Le Hai Khoi ;
Pham Trong Tien .
BULLETIN DES SCIENCES MATHEMATIQUES, 2020, 158
[42]   On Proximal Mappings with Young Functions in Uniformly Convex Banach Spaces [J].
Bacak, Miroslav ;
Kohlenbach, Ulrich .
JOURNAL OF CONVEX ANALYSIS, 2018, 25 (04) :1291-1318
[43]   Composition Operators on Weighted Bergman Spaces of Bounded Symmetric Domains [J].
XU XianminDeptof MathematicsZhejiang Normal UniversityJinhua China .
JournalofSystemsScienceandSystemsEngineering, 1996, (01) :90-102
[44]   Composition operators on the Bergman spaces of a minimal bounded homogeneous domain [J].
Yamaji, Satoshi .
HIROSHIMA MATHEMATICAL JOURNAL, 2013, 43 (01) :107-127
[45]   Spectra of compact composition operators over bounded symmetric domains [J].
Clahane, DD .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2005, 51 (01) :41-56
[46]   Spectra of Compact Composition Operators Over Bounded Symmetric Domains [J].
Dana D. Clahane .
Integral Equations and Operator Theory, 2005, 51 :41-56
[47]   The Navier-Stokes Equations in a Space of Bounded Functions [J].
Abe, Ken .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 338 (02) :849-865
[48]   The iterates of composition operators on Banach spaces of holomorphic functions [J].
Pham Trong Tien .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 487 (01)
[49]   Composition operators on weighted Banach spaces of entire functions [J].
Tien, Pham Trong .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2021, 66 (09) :1517-1533
[50]   The inverse conductivity problem via the calculus of functions of bounded variation [J].
Charalambopoulos, Antonios ;
Markaki, Vanessa ;
Kourounis, Drosos .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (08) :5032-5072