Fully flexible, lightweight, high performance all-solid-state supercapacitor based on 3-Dimensional-graphene/graphite-paper

被引:255
作者
Ramadoss, Ananthakumar [3 ]
Yoon, Ki-Yong [1 ,2 ]
Kwak, Myung-Jun [1 ,2 ]
Kim, Sun-I. [1 ,2 ]
Ryu, Seung-Tak [3 ]
Jang, Ji-Hyun [1 ,2 ]
机构
[1] Inst Basic Sci, Ctr Multidimens Carbon Mat, Ulsan 44919, South Korea
[2] Ulsan Natl Inst Sci & Technol, Low Dimens Carbon Mat Ctr, Sch Energy & Chem Engn, Ulsan 44919, South Korea
[3] Korea Adv Inst Sci & Technol, Sch Elect Engn, Daejeon 34141, South Korea
关键词
Flexible electrode; Three-dimensional porous graphene; Solid-state supercapacitor; CHEMICAL-VAPOR-DEPOSITION; COMPOSITE ELECTRODES; ENERGY-STORAGE; MICRO-SUPERCAPACITORS; GRAPHENE; PAPER; FILMS; NETWORKS; DESIGN;
D O I
10.1016/j.jpowsour.2016.10.091
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Realization of a highly flexible, lightweight, and high performance flexible supercapacitor was achieved using three-dimensional graphene on flexible graphite-paper. A simple and fast self-assembly approach was utilized for the uniform deposition of chemical vapor deposition (CVD)-grown high quality 3D-graphene powders on a flexible graphite-paper substrate. The fabricated paper-based symmetric supercapacitor exhibited a maximum capacitance of 260 F g(-1) (15.6 mF cm(-2)) in a three electrode system, 80 F g(-1) (11.1 mF cm(-2)) in a full cell, high capacitance retention and a high energy density of 8.8 Wh kg(-1) (1.24 mu Wh cm(-2)) at a power density of 178.5 W kg(-1) (24.5 mu W cm(-2)). The flexible super capacitor maintained its supercapacitor performance well, even under bent, rolled, or twisted conditions, signifying the excellent flexibility of the fabricated device. Our straightforward approach to the fabrication of highly flexible and lightweight supercapacitors offers new design opportunities for flexible/ wearable electronics and miniaturized device applications that require energy storage units that meet the demands of the multifarious applications. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:159 / 165
页数:7
相关论文
共 34 条
[1]   Amorphous MoSx thin-film-coated carbon fiber paper as a 3D electrode for long cycle life symmetric supercapacitors [J].
Balasingam, Suresh Kannan ;
Thirumurugan, Arun ;
Lee, Jae Sung ;
Jun, Yongseok .
NANOSCALE, 2016, 8 (23) :11787-11791
[2]   Capacitive energy storage in micro-scale devices: recent advances in design and fabrication of micro-supercapacitors [J].
Beidaghi, Majid ;
Gogotsi, Yury .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (03) :867-884
[3]   Three-dimensional graphene materials: preparation, structures and application in supercapacitors [J].
Cao, Xiehong ;
Yin, Zongyou ;
Zhang, Hua .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (06) :1850-1865
[4]   Flexible Graphene-Based Supercapacitors: A Review [J].
Chee, W. K. ;
Lim, H. N. ;
Zainal, Z. ;
Huang, N. M. ;
Harrison, I. ;
Andou, Y. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (08) :4153-4172
[5]   Scalable non-liquid-crystal spinning of locally aligned graphene fibers for high-performance wearable supercapacitors [J].
Chen, Shaohua ;
Ma, Wujun ;
Cheng, Yanhua ;
Weng, Zhe ;
Sun, Bin ;
Wang, Lu ;
Chen, Wenping ;
Li, Feng ;
Zhu, Meifang ;
Cheng, Hui-Ming .
NANO ENERGY, 2015, 15 :642-653
[6]   Flexible supercapacitors based on carbon nanomaterials [J].
Chen, Tao ;
Dai, Liming .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (28) :10756-10775
[7]   Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density [J].
Cheng, Qian ;
Tang, Jie ;
Ma, Jun ;
Zhang, Han ;
Shinya, Norio ;
Qin, Lu-Chang .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (39) :17615-17624
[8]   Graphene and nanostructured MnO2 composite electrodes for supercapacitors [J].
Cheng, Qian ;
Tang, Jie ;
Ma, Jun ;
Zhang, Han ;
Shinya, Norio ;
Qin, Lu-Chang .
CARBON, 2011, 49 (09) :2917-2925
[9]  
Chodankar N. R., 2016, ADV FUNCT MATER, V25, P463
[10]   Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors [J].
El-Kady, Maher F. ;
Strong, Veronica ;
Dubin, Sergey ;
Kaner, Richard B. .
SCIENCE, 2012, 335 (6074) :1326-1330