Multiple-soliton and lump-kink solutions for a generalized (3

被引:16
作者
Guan, Xue [1 ]
Liu, Wenjun [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Sci, State Key Lab Informat Photon & Opt Commun, POB 122, Beijing 100876, Peoples R China
基金
中国国家自然科学基金;
关键词
Soliton; Generalized Kadomtsev-Petviashvili equation; Multiple-soliton solution; Lump-kink solution; Dynamic properties; RIEMANN-HILBERT APPROACH; (3+1)-DIMENSIONAL JIMBO-MIWA; RATIONAL SOLUTIONS; EQUATION; WAVES;
D O I
10.1016/j.rinp.2020.103149
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In recent years, searching for analytic solutions to nonlinear evolution equations has become a popular topic. In this paper, a generalized (3 +1)-dimensional Kadomtsev-Petviashvili equation is proposed. With the help of symbolic calculation, the multiple-soliton and lump-kink solutions of the equation are obtained in two different ways. Those analytic solutions are presented, and their dynamic properties are discussed through graphical presentation. The final result is helpful for studying the interaction between solitons in nonlinear mathematical physics.
引用
收藏
页数:6
相关论文
共 19 条
[1]  
Gu C., 2004, DARBOUX TRANSFORMATI, DOI [10.1007/1-4020-3088-6, DOI 10.1007/1-4020-3088-6]
[2]   A Riemann-Hilbert approach for a new type coupled nonlinear Schrodinger equations [J].
Guo, Boling ;
Liu, Nan ;
Wang, Yufeng .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 459 (01) :145-158
[3]  
Hirota R, 2004, CAMBRIDGE TRACTS MAT, V155, DOI [10.1017/CBO9780511543043, DOI 10.1017/CBO9780511543043]
[4]   Riemann-Hilbert approach for an initial-boundary value problem of the two-component modified Korteweg-de Vries equation on the half-line [J].
Hu, Bei-Bei ;
Xia, Tie-Cheng ;
Ma, Wen-Xiu .
APPLIED MATHEMATICS AND COMPUTATION, 2018, 332 :148-159
[5]   Exact solutions of the equation for surface waves in a convecting fluid [J].
Kudryashov, Nikolay A. .
APPLIED MATHEMATICS AND COMPUTATION, 2019, 344 :97-106
[6]   Abundant lump and lump-kink solutions for the new (3+1)-dimensional generalized Kadomtsev-Petviashvili equation [J].
Liu, Jian-Guo ;
He, Yan .
NONLINEAR DYNAMICS, 2018, 92 (03) :1103-1108
[7]   Nonlinear optical properties of MoS2-WS2 heterostructure in fiber lasers [J].
Liu, W. J. ;
Liu, M. L. ;
Liu, B. ;
Quhe, R. G. ;
Lei, M. ;
Fang, S. B. ;
Teng, H. ;
Wei, Z. Y. .
OPTICS EXPRESS, 2019, 27 (05) :6689-6699
[8]   Interaction properties of solitonics in inhomogeneous optical fibers [J].
Liu, Wenjun ;
Zhang, Yujia ;
Triki, Houria ;
Mirzazadeh, Mohammad ;
Ekici, Mehmet ;
Zhou, Qin ;
Biswas, Anjan ;
Belic, Milivoj .
NONLINEAR DYNAMICS, 2019, 95 (01) :557-563
[9]   Study of lump dynamics based on a dimensionally reduced Hirota bilinear equation [J].
Lu, Xing ;
Ma, Wen-Xiu .
NONLINEAR DYNAMICS, 2016, 85 (02) :1217-1222
[10]   Lump solutions to the Kadomtsev-Petviashvili equation [J].
Ma, Wen-Xiu .
PHYSICS LETTERS A, 2015, 379 (36) :1975-1978