Crystallographic analysis of FAD-dependent glucose dehydrogenase

被引:2
|
作者
Komori, Hirofumi [1 ,2 ]
Inaka, Koji [3 ]
Furubayashi, Naoki [3 ]
Honda, Michinari [4 ]
Higuchi, Yoshiki [2 ,5 ]
机构
[1] Kagawa Univ, Fac Educ, Takamatsu, Kagawa 7608522, Japan
[2] RIKEN, SPring Ctr 8, Mikazuki, Hyogo 6795198, Japan
[3] Maruwa Foods & Biosci Inc, Nara 6391123, Japan
[4] Ikeda Tohka Ind Co Ltd, Fukuyama, Hiroshima 7210956, Japan
[5] Univ Hyogo, Dept Life Sci, Kamigori, Hyogo 6781297, Japan
来源
ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS | 2015年 / 71卷
基金
日本学术振兴会;
关键词
glucose dehydrogenase; FAD; glucose sensor; ANGSTROM RESOLUTION;
D O I
10.1107/S2053230X15010742
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
An FAD-dependent glucose dehydrogenase (GDH) from Aspergillus terreus was purified and crystallized at 293K using the sitting-drop vapour-diffusion method. A data set was collected to a resolution of 1.6 angstrom from a single crystal at 100K using a rotating-anode X-ray source. The crystal belonged to space group P2(1), with unit-cell parameters a = 56.56, b = 135.74, c = 74.13 angstrom, = 90.37 degrees. The asymmetric unit contained two molecules of GDH. The Matthews coefficient was calculated to be 2.2 angstrom(3)Da(-1) and the solvent content was estimated to be 44%.
引用
收藏
页码:1017 / 1019
页数:3
相关论文
共 50 条
  • [31] Hydrogen peroxide produced by glucose oxidase affects the performance of laccase cathodes in glucose/oxygen fuel cells: FAD-dependent glucose dehydrogenase as a replacement
    Milton, Ross D.
    Giroud, Fabien
    Thumser, Alfred E.
    Minteer, Shelley D.
    Slade, Robert C. T.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (44) : 19371 - 19379
  • [32] High Throughput Screening Platform for a FAD-Dependent L-Sorbose Dehydrogenase
    Shan, Xiaoyu
    Liu, Li
    Zeng, Weizhu
    Chen, Jian
    Zhou, Jingwen
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2020, 8
  • [33] ON MECHANISMS OF PHOTOCHEMICAL REDUCTIONS OF FAD AND FAD-DEPENDENT FLAVOPROTEINS
    MCCORMICK, DB
    KOSTER, JF
    VEEGER, C
    EUROPEAN JOURNAL OF BIOCHEMISTRY, 1967, 2 (04): : 387 - +
  • [34] Improved glucose oxidation catalytic current generation by an FAD-dependent glucose dehydrogenase-modified hydrogel electrode, in accordance with the Hofmeister effect
    Yoshida, Aimi
    Tsujimura, Seiya
    JOURNAL OF PHYSICS-ENERGY, 2021, 3 (02):
  • [35] Electrosynthesis of Pyrenediones on Carbon Nanotube Electrodes for Efficient Electron Transfer with FAD-dependent Glucose Dehydrogenase in Biofuel Cell Anodes
    Blanchard, Pierre-Yves
    Buzzetti, Paulo Henrique M.
    Davies, Bridget
    Nedellec, Yannig
    Girotto, Emerson Marcelo
    Gross, Andrew J.
    Le Goff, Alan
    Nishina, Yuta
    Cosnier, Serge
    Holzinger, Michael
    CHEMELECTROCHEM, 2019, 6 (20): : 5242 - 5247
  • [36] Activity determination of FAD-dependent glucose dehydrogenase immobilized in PEDOT: PSS-PVA composite films for biosensor applications
    Riegel, Anna-Lena
    Borzenkova, Natalia
    Haas, Verena
    Scharfer, Philip
    Schabel, Wilhelm
    ENGINEERING IN LIFE SCIENCES, 2016, 16 (06): : 577 - 585
  • [37] Long-term Continuous Operation of FAD-dependent Glucose Dehydrogenase Hydrogel-modified Electrode at 37 °C
    Suzuki, Aimi
    Tsujimura, Seiya
    CHEMISTRY LETTERS, 2016, 45 (04) : 484 - 486
  • [38] Mediator Preference of Two Different FAD-Dependent Glucose Dehydrogenases Employed in Disposable Enzyme Glucose Sensors
    Loew, Noya
    Tsugawa, Wakako
    Nagae, Daichi
    Kojima, Katsuhiro
    Sode, Koji
    SENSORS, 2017, 17 (11):
  • [39] Crystallographic fragment screening-based study of a novel FAD-dependent oxidoreductase from Chaetomium thermophilum
    Svecova, Leona
    Ostergaard, Lars Henrik
    Skalova, Tereza
    Schnorr, Kirk Matthew
    Koval', Tomas
    Kolenko, Petr
    Stransky, Jan
    Sedlak, David
    Duskova, Jarmila
    Trundova, Maria
    Hasek, Jindrich
    Dohnalek, Jan
    ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2021, 77 : 755 - 775
  • [40] Thermostable FAD-dependent Glucose Dehydrogenases from Thermophilic Filamentous Fungus Thermoascus aurantiacus
    Iwasa, Hisanori
    Ozawa, Kazumichi
    Sasaki, Noriko
    Kinoshita, Nao
    Hiratsuka, Atsunori
    Yokoyama, Kenji
    ELECTROCHEMISTRY, 2016, 84 (05) : 342 - 348